970 resultados para nanofiber membranes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of water and ions across mimicked nanotube membranes with pseudo atoms is studied using molecular dynamics simulations under equilibrium conditions and hydrostatic pressure. Different pore surface properties are constructed by assigning partial charges on the sites of specified atoms to explore the influence of charges and polarity. The energetics of water and ion transports through the nanopores was calculated to evaluate their filterability to water. The simulation results show that the free energy barriers to water and ion conductions much depend on the charges at the pore entrance and the dipole within the pore. The membranes with hydrophobic pores and negatively charged entrances would be very efficient in the water transport and ion rejection. The charges and dipoles of the pore wall and the aligned dipoles of water molecules in the pore can create a significant force on ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive characterization and observation of synthetic membranes is an important practice to monitor the performance of membrane process. Primarily there are two techniques—optical and non-optical for this purpose. Among them, X-ray computed tomography, as a non-optical technique, has been extensively used for the measurement of fibre distribution and air pockets trapped in the modules. However, the micro resolution of most commercial systems has limited its application which can hardly be used for the sub-micro characterization of membrane processes. A novel micro and nano characterization method is introduced in the current work by exploring an innovative development of the X-ray ultramicroscope (XuM) and micro-tomographic techniques. The XuM, based on using a scanning electron microscope as host, provides a new approach to X-ray projection microscopy. It has demonstrated the ability to characterize very small features in objects, down to of order 100 nm, including the use for dry, wet and even liquid samples. It can also distinguish objects with very subtle difference in density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafiltration (UF) of whey is a major membrane based process in the dairy industry. However, commercialization of this application has been limited by membrane fouling, which has a detrimental influence on the permeation rate. There are a number of different chemical and physical cleaning methods currently used for cleaning a fouled membrane. It has been suggested that the cleaning frequency and the severity of such cleaning procedures control the membrane lifetime. The development of an optimal cleaning strategy should therefore have a direct implication on the process economics. Recently, the use of ultrasound has attracted considerable interest as an alternative approach to the conventional methods. In the present study, we have studied the ultrasonic cleaning of polysulfone ultrafiltration membranes fouled with dairy whey solutions. The effects of a number of cleaning process parameters have been examined in the presence of ultrasound and results compared with the conventional operation. Experiments were conducted using a small single sheet membrane unit that was immersed totally within an ultrasonic bath. Results show that ultrasonic cleaning improves the cleaning efficiency under all experimental conditions. The ultrasonic effect is more significant in the absence of surfactant, but is less influenced by temperature and transmembrane pressure. Our results suggest that the ultrasonic energy acts primarily by increasing the turbulence within the cleaning solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrafiltration of whey solutions is a common feature of dairy processes. However, the frequent fouling of ultrafiltration membranes and the subsequent cleaning cycle significantly affect the economics of such a process. In this work, we investigated the effect of ultrasonics on the cleaning of whey-fouled membranes and examined the variables that influence this effect. Experiments were conducted using a small single sheet membrane unit that was immersed totally within an ultrasonic bath.

Results show that the use of ultrasonics enhances the flux recovery following fouling. The extent of flux recovery is independent of the length of sonication time and increases with ultrasonic power. The use of surfactants in combination with ultrasonic irradiation shows a synergistic effect, providing a better efficiency than either cleaning process alone. Repetitive use of ultrasonic cleaning over a 1 month period does not result in any significant change in the permeate flux of a cleaned membrane, indicating that the ultrasonic treatment does not appear to damage the membrane structure itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flat sheet polymeric UF membranes of 30000 MWCO were obtained from Millipore Inc. Polypropylene spacers of a 50 mil (1.3 mm) thickness were obtained from KOCH membrane systems. A single 30 cm^sup 2^ membrane sheet was sandwiched with a spacer on the feed side of a cross flow Minitan S unit (Millipore Inc). The unit was immersed in a 50 kHz ultrasonic bath that was switched on as required. All experiments used re-constituted spray-dried whey powder to foul the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulation of beta amyloid (Aβ) in the brain is central to the pathogenesis of Alzheimer's disease. Aβ can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Aβ binding to membranes. Aβ peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Aβ peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Aβ peptides and their membrane binding. 'Ageing' the Aβ peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Aβ analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Aβ to purified plasma membrane preparations but also reduced Aβ toxicity. The results support the view that Aβ toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Aβ-membrane binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are nanoscale cylinders of graphene with exceptional properties such as high mechanical strength, high aspect ratio and large specific surface area. To exploit these properties for membranes, macroscopic structures need to be designed with controlled porosity and pore size. This manuscript reviews recent progress on two such structures: (i) CNT Bucky-papers, a non-woven, paper like structure of randomly entangled CNTs, and (ii) isoporous CNT membranes, where the hollow CNT interior acts as a membrane pore. The construction of these two types of membranes will be discussed, characterization and permeance results compared, and some promising applications presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, two different polymer membrane systems based on Nafion and Teflon were investigated as proton conductors for polymer membrane fuel cells. Water-free Nafion117 membranes swollen with different non-aqueous solvents were prepared. The solvents included imidazole, imidazole–imidazolium salt solutions, room temperature molten salts and molten salt–acid solutions. Teflon films were treated with a surfactant, or a Nafion solution, to improve their surface properties, and were subsequently swollen with phosphoric acid. Conductivity measurements were carried out on both the Nafion and Teflon membranes. Conductivities in the range of 10−3 S cm−1 at around 100°C were obtained. This is still an order of magnitude lower than the corresponding water swollen Nafion at 80°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, cellulose nanofibers were obtained from wood pulp using a chemo-mechanical method and thin films were made of these cellulose nanofibers. The morphology of the films was studied by scanning electron microscopy (SEM). SEM image analysis revealed that the films were composed of cellulose nanofibers with an average diameter of around 32 nm. Other properties were also characterized, including the degree of crystallinity by X-ray diffraction, chemical bonding by infrared attenuated total reflectance analysis, and thermal properties by differential scanning calorimetry. The foldable, strong, and optically translucent cellulose nanofiber films thus obtained have many potential applications as micro/nano electronic devices, biosensors and filtration media, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electropsipinning is a simple, but efficient and versatile, technology to produce polymeric nanofibers for diverse applications in both textile and non-textile areas. In this paper, recent research developments in electrospinning and electrospun nanofibers, especially thaose from the Centre for Material and Fiber Innovation, Deakin University, are introduced. Important findings on needleless mass-electrospinning and direct electrospinning of highly-twisted continuous manfiber yarns are presented.