969 resultados para meticillin resistant Staphylococcus aureus
Resumo:
Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.
Resumo:
The Staphylococcus aureus fibronectin (Fn) -binding protein A (FnBPA) is involved in bacterium-endothelium interactions which is one of the crucial events leading to infective endocarditis (IE). We previously showed that the sole expression of S. aureus FnBPA was sufficient to confer to non-invasive Lactococcus lactis bacteria the capacity to invade human endothelial cells (ECs) and to launch the typical endothelial proinflammatory and procoagulant responses that characterize IE. In the present study we further questioned whether these bacterium-EC interactions could be reproduced by single or combined FnBPA sub-domains (A, B, C or D) using a large library of truncated FnBPA constructs expressed in L. lactis. Significant invasion of cultured ECs was found for L. lactis expressing the FnBPA subdomains CD (aa 604-877) or A4(+16) (aa 432-559). Moreover, this correlates with the capacity of these fragments to elicit in vitro a marked increase in EC surface expression of both ICAM-1 and VCAM-1 and secretion of the CXCL8 chemokine and finally to induce a tissue factor-dependent endothelial coagulation response. We thus conclude that (sub)domains of the staphylococcal FnBPA molecule that express Fn-binding modules, alone or in combination, are sufficient to evoke an endothelial proinflammatory as well as a procoagulant response and thus account for IE severity.
Resumo:
Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a biofilm, a structured community of bacterial cells adherent to the surface of a solid substrate. Every biofilm begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated from humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct binding-force signature and had specific single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.
Resumo:
BACKGROUND: Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. METHODS: IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. RESULTS: 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). CONCLUSIONS: MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study.
Resumo:
A cluster of six pediatric cases of deep-seated Staphylococcus aureus infection after heart operations prompted us to perform molecular typing of the S. aureus isolates by pulsed-field gel electrophoresis. This revealed the presence of genotypically distinct isolates in four of the six patients. Isolates of two patients were genotypically identical. All patients carried S. aureus in the anterior nares. In each patient, the banding pattern of deoxyribonucleic acid in these isolates was indistinguishable from that in strains isolated from blood or wound cultures. Molecular typing with pulsed-field gel electrophoresis ruled out nosocomial transmission of S. aureus between four patients; at the same time, it provided evidence for an association between nasal colonization and postoperative wound infection. Epidemiologic investigation of potential links between two patients with identical isolates did not provide any evidence for nosocomial transmission of S. aureus between these patients. Because nasal colonization with S. aureus may be a risk factor for surgical wound infection in pediatric patients undergoing heart operations, preoperative decolonization appears to be warranted.
Resumo:
The pathogenic role of staphylococcal coagulase and clumping factor was investigated in the rat model of endocarditis. The coagulase-producing and clumping factor-producing parent strain Staphylococcus aureus Newman and a series of mutants defective in either coagulase, clumping factor, or both were tested for their ability (i) to attach in vitro to either rat fibrinogen or platelet-fibrin clots and (ii) to produce endocarditis in rats with catheter-induced aortic vegetations. In vitro, the clumping factor-defective mutants were up to 100 times less able than the wild type strain to attach to fibrinogen and also significantly less adherent than the parents to platelet-fibrin clots. Coagulase-defective mutants, in contrast, were not altered in their in vitro adherence phenotype. The rate of in vivo infection was inoculum dependent. Clumping factor-defective mutants produced ca. 50% less endocarditis than the parent organisms when injected at inoculum sizes infecting, respectively, 40 and 80% (ID40 and ID80, respectively) of rats with the wild-type strain. This was a trend at the ID40 but was statistically significant at the ID80 (P < 0.05). Coagulase-defective bacteria were not affected in their infectivity. Complementation of a clumping factor-defective mutant with a copy of the wild-type clumping factor gene restored both its in vitro adherence and its in vivo infectivity. These results show that clumping factor plays a specific role in the pathogenesis of S. aureus endocarditis. Nevertheless, the rate of endocarditis with clumping factor-defective mutants increased with larger inocula, indicating the contribution of additional pathogenic determinants in the infective process.
Resumo:
Résumé Le staphylocoque doré est un pathogène responsable d'une grande variété de maladies chez l'être humain. Il est extrêmement bien équipé de facteurs de virulence, dont les adhésines. Jusqu'à présent, 21 protéines liant des composants de tissus de l'hôte ("microbial surface components reacting with adherence matrix molecules, MSCRAMM") ont été identifiées, par exemple le "clumping factor" A (CIfA) ou la "fibronectin-binding protein" A (FnBPA). Néanmoins, pour la plupart de ces protéines, leur rôle dans la pathogénie des infections à staphylocoque doré reste à être élucidé. Le but de cette thèse est de contribuer à ce processus. Premièrement, les "MSCRAMM" CIfA, CIfB, FnBPA, FnBPB, Cna, SpA, Pls, SdrC, SdrD, SdrE, SasD, SasE, SasF, SasG, Sasl, SasJ et SasK ont été exprimés dans une bactérie substitut, Lactococcus lactis, et testés pour leurs propriétés adhésives et leur pathogénicité dans un modèle d'endocardite expérimentale (voir chapitre 1). Cette technique a préalablement été utilisée avec succès et a l'avantage d'éviter le contexte complexe des redondances et systèmes de régulations propres au staphylocoque doré. Les résultats montrent que, de tous les facteurs de virulence testés, seuls CIfA et FnBPA sont d'importance primordiale dans le développement d'endocardite expérimentale. En ce qui concerne l'internalisation dans les cellules endothéliales, seulement FnPBA et FnBPB en sont capables. En outre, l'adhérence à chacun des ligands testés (fibrinogène, fibronectine, kératine, élastine, collagène, et les caillots de fibrine et plaquettes) est très spécifique et est médiée par une ou plusieures adhésines provenant du staphylocoque doré. Par conséquence, ces protéines pourraient représenter des cibles potentielles pour de futures thérapies anti-adhésives contre le staphylocoque doré. Deuxièmement, l'expression des facteurs de virulence décrits dans le chapitre 1 par les souches recombinantes de lactocoques a été vérifiée par une nouvelle méthode utilisant la spectrométrie de masse (voir chapitre 2). L'expression de toutes ces protéines par les souches recombinantes a pu être confirmée. Cette méthode pourrait être de grande valeur dans la vérification de la présence de protéines quelconques dans toutes sortes d'applications. Troisièmement, deux facteurs de virulence du staphylocoque, CIfA et une forme tronquée de FnBPA, ont été exprimés de façon simultanée dans une souche recombinante de lactocoque (voir chapitre 3}. Contrairement à une souche exprimant la FnBPA entière, une souche exprimant la forme tronquée de FnPBA, qui ne contient plus le domaine capable de lier le fibrinogène, perd complètement sa capacité d'infecter dans le modèle d'endocardite expérimentale. Par contre, il est montré que, en cas de complémentation de la forme tronquée de FnPBA avec le domaine de liaison au fibrinogène de CIfA dans la souche double recombinante, le phénotype intégral de FnBPA est récupéré. En conséquence, les facteurs de virulence sont capables de coopérer dans le but de la pathogénie des infections à staphylocoque doré. Summary Staphylococcus aureus is a human pathogen causing a wide variety of disease. It is extremely well equipped with both secreted and surface-attached virulence factors, which can act as adhesins to host tissues. In total, twenty-one microbial surface components reacting with adherence matrix molecules (MSCRAMMs) have been identified, so far. These include well-characterized adhesins such as clumping factor A (CIfA) or fibronectin-binding protein A (FnBPA). However, for most of them their potential role in the pathogenesis of staphylococcal infections remains to be elucidated. This has been attempted in this thesis work. Firstly, the staphylococcal MSCRAMMs CIfA, CIfB, FnBPA, FnBPB, Cna, SpA, Pls, SdrC, SdrD, SdrE, SasD, SasE, SasF, SasG, Sasl, SasJ, and SasK have been expressed in a surrogate bacterium, Lactococcus lactis, and tested for their in vitro adherence properties and their pathogenicity in the rat model of experimental endocarditis (see chapter 1). This model has successfully been used previously, and has the advantage of bypassing the complex S. aureus background of redundancies and differential regulation. Here, it is shown that of the seventeen tested potential virulence factors, only CIfA and FnBPA are critical for the pathogenesis of experimental endocarditis in rats, while internalization into bovine endothelial cells is mediated exclusively by FnBPA and FnBPB. In addition, the adherence to specific host ligands (fibrinogen, fibronectin, keratin, elastin, collagen, and fibrin-platelet clots) is highly specific and mediated by one or few staphylococcal adhesins, respectively. Thus, these surface proteins may represent potential targets for an anti-adhesive strategy against S. aureus infections. Secondly, the expression of the staphylococcal proteins by L. lactis recombinants described in chapter 1 was tested by a novel method using mass spectrometry (see chapter 2). The expression of all the staphylococcal proteins by the respective recombinant lactococcal strain could be confirmed. This method may prove to be of great value in the confirmation of the presence of any given protein in various experimental settings. Thirdly, two staphylococcal virulence factors, CIfA and a truncated form of FnBPA, were expressed simultaneously in one recombinant lactococcal strain (see chapter 3). In contrast to a recombinant strain expressing full-length FnPBA, a recombinant strain expressing a truncated FnPBA, lacking the domain capable of binding fibrinogen, completely lost infectivity in experimental endocarditis. However, it is shown that the complementation of the truncated form of FnBPA with the fibrinogenbinding domain of CIfA in a double recombinant strain results in the recovery of the complete phenotype of full-length FnBPA. Thus, virulence factors can cooperate in the pathogenesis of staphylococcal infections.
Resumo:
Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8 group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine clusters carried commonly human-associated β-hemolysin converting prophages, the bovine-only isolates were devoid of such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8 isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-only CC8 group was associated with the combined loss of β-hemolysin converting prophages and gain of a new SCC probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them back to human.
Resumo:
Staphylococcus aureus is an opportunistic pathogen whose infectious capacity depends on surface proteins, which enable bacteria to colonize and invade host tissues and cells. We analyzed "trypsin-shaved" surface proteins of S. aureus cultures by high resolution LC-MS/MS at different growth stages and culture conditions. Some modified peptides were identified, with a mass shift corresponding to the addition of a CH(2)O group (+30.0106u). We present evidence that this shift corresponds to a hyxdroxymethylation of asparagine and glutamine residues. This known but poorly documented post-translational modification was only found in a few proteins of S. aureus grown under specific conditions. This specificity seemed to exclude the hypothesis of an artifact due to sample preparation. Altogether hydroxymethylation was observed in 35 peptides from 15 proteins in our dataset, which corresponded to 41 modified sites, 35 of them being univocally localized. While no function can currently be assigned to this post-translational modification, we hypothesize that it could be linked to modulation of virulence factors, since it was mostly found on some surface proteins of S. aureus.
Resumo:
Ce travail s'inscrit dans le cadre d'un projet dont l'objectif est d'étudier les propriétés d'adhésion du ClfA au fibrinogène à l'aide de l'AFM. Plus précisément, le mode « Force spectroscopy » de l'AFM sera utilisé afin de mesurer les forces d'interactions entre le fibrinogène et le ClfA cloné à des bactéries ne comportant pas de MSCRAMMs et n'étant pas pathogène pour l'homme. Puis les forces d'interactions seront mesurées entre le fibrinogène et la surface des S. aureus. Une meilleure connaissance des propriétés d'adhésion des S. aureus au ClfA contribuerait ainsi au développement de la recherche dans ce domaine et à de potentielle future thérapie contre les infections à S. aureus.
Resumo:
Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell. Microbiol. 1:101-117, 1999). However, it is unknown whether this mechanism is sufficient for S. aureus invasion. To address this question, various S. aureus adhesins (FnBPA, FnBPB, and clumping factor [ClfA]) were expressed in Staphylococcus carnosus and Lactococcus lactis subsp. cremoris. Both noninvasive gram-positive microorganisms are genetically distinct from S. aureus, lack any known S. aureus surface protein, and do not bind fibronectin. Transformants of S. carnosus and L. lactis harboring plasmids coding for various S. aureus surface proteins (FnBPA, FnBPB, and ClfA) functionally expressed adhesins (as determined by bacterial clumping in plasma, specific latex agglutination, Western ligand blotting, and binding to immobilized and soluble fibronectin). FnBPA or FnBPB but not of ClfA conferred invasiveness to S. carnosus and L. lactis. Invasion of 293 cells by transformants was comparable to that of strongly invasive S. aureus strain Cowan 1. Binding of soluble and immobilized fibronectin paralleled invasiveness, demonstrating that the amount of accessible surface FnBPs is rate limiting. Thus, S. aureus FnBPs confer invasiveness to noninvasive, apathogenic gram-positive cocci. Furthermore, FnBP-coated polystyrene beads were internalized by 293 cells, demonstrating that FnBPs are sufficient for invasion of host cells without the need for (S. aureus-specific) coreceptors.
Resumo:
Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.