992 resultados para leaf area index (LAI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined how different rainfall regimes affect a set of leaf functional traits related to plant stress and forest structure in tropical dry forest (TDF) species on limestone substrate. One hundred fifty eight individuals of four tree species were sampled in six ecological sites in south Florida and Puerto Rico, ranging in mean annual rainfall from 858 to 1933 mm yr-1. Leaf nitrogen content, specific leaf area (SLA), and N:P ratio of evergreen species, but not deciduous species, responded positively to increasing rainfall. Phosphorus content was unaffected in both groups. Canopy height and basal area reached maxima of 10.3 m and 31.4 m2 ha-1, respectively, at 1168 mm annual rainfall. Leaf traits reflected soil properties only to a small extent. This led us to the conclusion that water is a major limiting factor in TDF and some species that comprise TDF ecosystems are limited by nitrogen in limestone sites with less than ~1012 mm rainfall, but organismal, biological and/or abiotic forces other than rainfall control forest structure in moister sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen (N) is one of the major nutrients nutrients absorbed in corn crops, for this reason, nitrogen based fertilizers are expensive and suffer large losses to the environment. Therefore, a diversity of fertilizers, known as special or of enhanced efficiency fertilizers, has been commercialized. The aim of this study was to evaluate the effect of different sources and levels of nitrogen fertilization in coverage, for agronomic characteristics and corn grain productivity, cultivated in the Cerrado region. The experiment was installed in 2015, in Monte Carmelo-MG. The experimental design utilized was a RCBD with four replications. The treatments consisted of five N sources (common urea, polymerized urea, urea combined with NBPT (thiophosphate N-n-butiltriamida or N-n-butiltriamida of thiophosphoric acid), organomineral combined or not with NBPT), five topdress N levels (40, 80, 120, 160 and 200 kg ha-1) and a control (no N topdressing). The evaluated parameters were: the first spike insertion height (FSIH), plant height (PH), stem diameter (DC), number of rows per spike (RS), number of grains per row (GR), spike length (SL), spike diameter (SD), prolificacy (EP), 1,000-grain weight (TGW), leaf chlorophyll index (LCI), content of foliar nutrients, dry matter in aerial part of the plant (DM) and productivity (PG). The results showed that, with the exception of stem diameter, there was no significant statistical difference between sources of nitrogen, indicating that the organomineral source is as efficient as a mineral source. Regardless of the source, the addition of N fertilizers in increasing doses promoted enhanced development of corn plants, increased chlorophyll content, stem diameter, leaf N content, crude protein and productivity. For most phytotechnical features, there was no significant statistic difference in treatments compared to control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as

`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol

particles and greenhouse gases (GHGs) as responses to their surrounding environments.

While the signicance of quantifying the exchange rates of GHGs and atmospheric

aerosol particles between the terrestrial biosphere and the atmosphere is

hardly questioned in many scientic elds, the progress in improving model predictability,

data interpretation or the combination of the two remains impeded by

the lack of precise framework elucidating their dynamic transport processes over a

wide range of spatiotemporal scales. The diculty in developing prognostic modeling

tools to quantify the source or sink strength of these atmospheric substances

can be further magnied by the fact that the climate system is also sensitive to the

feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,

the emergent need is to reduce uncertainties when assessing this complex and dynamic

feedback cycle that is necessary to support the decisions of mitigation and

adaptation policies associated with human activities (e.g., anthropogenic emission

controls and land use managements) under current and future climate regimes.

With the goal to improve the predictions for the biosphere-atmosphere exchange

of biologically active gases and atmospheric aerosol particles, the main focus of this

dissertation is on revising and up-scaling the biotic and abiotic transport processes

from leaf to canopy scales. The validity of previous modeling studies in determining

iv

the exchange rate of gases and particles is evaluated with detailed descriptions of their

limitations. Mechanistic-based modeling approaches along with empirical studies

across dierent scales are employed to rene the mathematical descriptions of surface

conductance responsible for gas and particle exchanges as commonly adopted by all

operational models. Specically, how variation in horizontal leaf area density within

the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes

and thereby the ultrane particle collection eciency at the leaf/branch scale

is explored using wind tunnel experiments with interpretations by a porous media

model and a scaling analysis. A multi-layered and size-resolved second-order closure

model combined with particle

uxes and concentration measurements within and

above a forest is used to explore the particle transport processes within the canopy

sub-layer and the partitioning of particle deposition onto canopy medium and forest

oor. For gases, a modeling framework accounting for the leaf-level boundary layer

eects on the stomatal pathway for gas exchange is proposed and combined with sap

ux measurements in a wind tunnel to assess how leaf-level transpiration varies with

increasing wind speed. How exogenous environmental conditions and endogenous

soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and

below-ground water dynamics in the soil-plant system and shape plant responses

to droughts is assessed by a porous media model that accommodates the transient

water

ow within the plant vascular system and is coupled with the aforementioned

leaf-level gas exchange model and soil-root interaction model. It should be noted

that tackling all aspects of potential issues causing uncertainties in forecasting the

feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single

dissertation but further research questions and opportunities based on the foundation

derived from this dissertation are also brie

y discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphological, anatomical and physiological plant and leaf traits of A. distorta, an endemic species of the Central Apennines on the Majella Massif, growing at 2,675 m a.s.l, were analyzed. The length of the phenological cycle starts immediately after the snowmelt at the end of May, lasting 128 ± 10 days. The low A. distorta height  (Hmax= 64 ± 4 mm) and total leaf area (TLA= 38 ± 9 cm2) associated to a high leaf mass area (LMA =11.8±0.6 mg cm−2) and a relatively high leaf tissue density (LTD = 124.6±14.3 mg cm−3) seem to be adaptive traits to the stress factors of the environment where it grows. From a physiological point of view, the high A. distorta photosynthetic rates (PN =19.6 ± 2.3 µmol m−2 s−1) and total chlorophyll content (Chla+b = 0.88 ± 0.13 mg g−1) in July are justified by the favorable temperature. PN decreases by 87% in September at the beginning of plant senescence. Photosynthesis and leaf respiration (RD) variations allow A. distorta to maintain a positive carbon balance during the growing season becoming indicative of the efficiency of plant carbon use. The results could be an important tool for conservation programmes of the A. distorta wild populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air pollution can threat the environment and public health, and is assess by pollutant ́s concentration measurements in order to verify whether the limits set by environmental agencies are being respected. However, these measures do not indicate immediately the impacts to living beings. To faced this problem, plants are been investigated as potential bioindicators of air pollution and, among them, stand out bromeliads Tillandsia genus which colonize various substrates,. obtaining water and nutrients from the atmosphere directly. In this context, this research assessed the potential of epiphytic bromeliad Tillandsia recurvata (L.) L. found in urbanized areas of the city of Curitiba - PR as a bioindicator of urban air pollution. According to vehicle traffic, five sample points were selected and classified. Points P1 and P2 were classified as high-traffic vehicle due presenting trucks and urban transport; point P3 was classified as moderate traffic due the predominance of private vehicles and urban transport; and points P4 and P5 were classified as low-traffic, presenting circulation of private vehicles only. There were analyzed the abundance of T. recurvata, morphophysiological parameters (leaf area, leaf specific area, sclerophylly index, percentage dry weight / fresh weight, chlorophyll (a + b), analysis of structural mesophyll organization) and the heavy metals accumulation (Fe, Cd, Cr, Cu, Pb and Zn). The abundance analysis and the results obtained for metals analysis were correlated with the intensity of vehicular traffic, directing the sampling points P1 > P2 = P3 > P4 = P5. This result demonstrate that the abundance of T. recurvata is greater in urban air pollution impacted areas, thus indicating that T. recurvata absorbs and accumulates metals and can be used in biomonitoring of urban air pollution in areas impacted by vehicular traffic. Morphophysiological parameters analyzed shows that the internal plant ́s structure is not significantly impacted by urban air pollution due plant ́s adptations. The presence of absorbing scales, the CAM metabolism pathway and it ́s store water ability, among other features, demonstrate their potential as bio-indicator in urban areas, especially regarding heavy metals accumulation .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presença de plantas daninhas em plantios de eucalipto, especialmente nos dois primeiros anos, pode acarretar grandes prejuízos à produtividade, pois reduz a eficiência de aproveitamento dos recursos de crescimento pela cultura. Assim, objetivou-se com este trabalho avaliar os efeitos da interferência de plantas daninhas sobre o crescimento inicial de dois clones de Eucalyptus urophylla x Eucalyptus grandis e a concentração foliar de nutrientes na cultura e nas plantas daninhas. O experimento foi instalado em esquema fatorial 2 x 5 + 7, sendo dois clones de híbridos de Eucalyptus urophylla x Eucalyptus grandis, identificados como CNB001 e CNB016, em competição com cinco plantas daninhas Urochloa decumbens (capim-braquiária), Ipomoea nil (corda-de-viola), Commelina diffusa (trapoeraba), Spermacoce latifolia (erva-quente) e Panicum maximum (capim-colonião). Adicionalmente, foram cultivados os dois clones de eucalipto e as cinco plantas daninhas em monocultivo como padrão de comparação, no delineamento inteiramente casualizado, com quatro repetições. Foram avaliados eucalipto através da altura de plantas, o diâmetro do coleto, o número de ramos, a área foliar, a matéria seca e, o teor foliar de nutrientes do eucalipto, bem como o teor de nutrientes nas folhas das plantas daninhas. O clone CNB001 apresentou crescimento inicial superior ao clone CNB016, no entanto, livre da interferência de plantas daninhas, verificaram-se teores foliares semelhantes para a maioria dos nutrientes em ambos os genótipos. O clone CNB016 mostrou maior sensibilidade à interferência negativa das plantas daninhas que o clone CNB001, sendo seu crescimento inicial mais afetado por Ipomoea nil e a concentração de nutrientes reduzida pelas espécies Panicum maximum, Urochloa decumbens e Commelina diffusa. Panicum maximum apresentou maior interferência com o clone CNB001, enquanto Ipomoea nil pouco influenciou o crescimento e o teor de nutrientes deste híbrido. As plantas daninhas apresentaram elevada capacidade de extrair nutrientes do solo, mesmo em convivência com os clones de Eucalyptus urophylla x Eucalyptus grandis. A interferência imposta à cultura é dependente da espécie infestante e do genótipo de eucalipto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os métodos tradicionais para a quantificação de clorofilas implicam na destruição das folhas, além de serem demorados e dispendiosos. Uma alternativa aos métodos destrutivos é o uso de medidores portáteis, dentre eles o SPAD 502, que mede a intensidade da cor verde das folhas, resultando no índice SPAD (Soil Plant Analysis Development). No entanto, o índice SPAD deve ser ajustado para o teor de clorofilas, conforme a espécie de interesse. O objetivo do presente trabalho foi calibrar o índice SPAD para a quantificação de clorofilas em folhas de plantas de vime ( Salix viminalis ). Folhas desta espécie, com tonalidade variando de verde-amarelada (clorótica) a verde-escura, foram avaliadas individualmente com o SPAD-502, seguido de quantificações destrutivas dos teores de clorofilas a, b e totais, expressos em unidade de área e massa fresca foliar. Houve elevado coeficiente de determinação (R²) entre os valores de índice SPAD e os teores de clorofila a, b e totais nas folhas, expressos em μg cm-2 de área foliar (R² de 0,86; 0,88 e 0,93, respectivamente) e entre os valores de índice SPAD e os teores de clorofilas b e totais, expressos em μg g-1 de massa fresca (R² 0,79 e 0,81, respectivamente). Os resultados mostram que existe viabilidade no uso do clorofilômetro SPAD 502, como alternativa aos métodos destrutivos, para a quantificação de clorofilas (em unidade de área; μg cm-2) em folhas de vimeiro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o efeito do tipo de miniestacas e a necessidade de aplicação de ácido indolbutírico sobre o enraizamento e qualidade das mudas formadas de Handroanthus heptaphyllus . As miniestacas apicais e intermediárias foram obtidas em minijardim multiclonal formado a partir de sementes. As miniestacas foram preparadas com 5 cm de comprimento, um par de folhas reduzidas a 50% da área foliar e estaqueadas sem e com AIB na concentração de 8000 mg L-1. As avaliações foram realizadas aos 30 dias, na expedição do setor de enraizamento e aos 120 dias, quando a muda se encontrava formada. O experimento foi conduzido em delineamento inteiramente casualizado, em esquema fatorial 3 x 2 x 2 (três épocas de coleta, duas concentrações de AIB e duas posições do propágulo), com quatro repetições, sendo 12 miniestacas por repetição. De acordo com os resultados, o AIB não foi necessário para o enraizamento das miniestacas, entretanto, sua utilização promove incremento do número e comprimento de raízes. As miniestacas intermediárias proporcionaram maior massa seca de raízes aos 30 dias após o estaqueamento, e aos 120 dias, maior número de folhas e de raízes. A época de coleta influenciou a qualidade final das mudas. Aquelas produzidas na última coleta (oitavo) apresentaram valores médios inferiores nas características biométricas, exceto para o comprimento e número de raízes de primeira ordem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At Mediterranean regions and particularly in southern Portugal, it is imperative to identify grape varieties more adapted to warm and dry climates in order to overcome future climatic changes. Two Vitis vinifera genotypes, Aragonez (syn. Tempranillo) and Trincadeira, were selected to assess their physiological responses to soil water stress. Vines were subjected to four irrigation regimes: irrigated during all phenological cycle, non-irrigated during all phenological cycle, non irrigated until veraison, irrigated after veraison. Predawn leaf water potential was much higher in Trincadeira than Aragonez in non- irrigated plants. This result is in accordance with its higher stomatal control efficiency in this variety (Trincadeira). Photosynthetic capacity (Amax at saturating light intensity) decreased due to stomatal and biochemical limitations under water stress. However, recovery capacity of leaf water status after irrigation was faster in Trincadeira. Yield and yield x Brix increased when irrigation occurred after veraison, particularly in Trincadeira. These results show that Trincadeira presents a drought adaptation than Aragonez. Ratio of variable to maximum fluorescence Fv/Fm and total leaf chlorophyll related with leaf water potential for both species. Reflectance Normalized Difference Vegetation Index (NDVI705), Red Edge Inflexion Point Index and Photochemical Reflectance Index were related with irrigation treatment. Relative water content and specific leaf area were similar between varieties. In conclusion, we suggested that there is variation among the genotypes and the main physiological parameters for variety selection, for drought, were leaf water potential, stomatal conductance and reflectance indexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was proposed to evaluate the hydroponic lettuce production, variety Vera, on inclined benches with channels of 100 mm, and Nutrient Film Technique, as answer to carbon dioxide application and evaporative cooling. There were five cycles of cultivation from March, 20th to April, 17th (C1); from May, 25th to June, 29th (C2); from July, 13th to August, 20th (C3); from August, 27th to October, 10th (C4); from December, 12th to January, 10th (C5). In three greenhouses were tested the following systems: (A1) without evaporative cooling air CO2 aerial injection, (A2) with CO2 aerial injection and without evaporative cooling and (A3) with CO2 aerial injection and pad-fan evaporative cooling system. The fresh and dry mass of leaves in grams, number of leaves and leaf area in square millimeter were evaluated. The completely randomized statistical analysis was used. The cycle C1 were used 48 replications, for cycles C2, C3 and C5 were used 64 replications and C5 were used 24 replications. The results showed that greenhouse with evaporative cooling system and CO2 allow better development and greater lettuce yield. It was possible to conclude that the aerial injection of CO2, in the absence of evaporative cooling system, did not lead increasing the lettuce productivity to most cycles. Bigger lettuce leaf areas were found in periods with higher temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivou-se avaliar a produção de massa seca das folhas, a relação folha/colmo e alguns índices de crescimento do capim-xaraés submetido a doses de nitrogênio (N) e potássio (K). O experimento foi conduzido em casa-de-vegetação no período de novembro/2004 a fevereiro/2005. Adotou-se esquema fatorial 4 ´ 3, perfazendo 12 combinações, as quais foram distribuídas em delineamento experimental inteiramente casualizado, com quatro repetições, perfazendo um total 48 unidades experimentais. Foram utilizadas quatro doses de N (0, 75, 150 e 225 mg dm-3) e três doses de K (0, 50 e 100 mg dm-3). Verificou-se efeito das doses de N na produção de massa seca das folhas e na produção de massa seca total, em todos os cortes, com maior produção nas doses mais elevadas de N, ao passo que o K influenciou essas variáveis apenas no segundo corte. A relação folha/colmo, a RAF, a AFE e a RPF somente foram significativas no terceiro corte da planta. Os efeitos das doses de foram decrescentes sobre essas variáveis, enquanto as doses de K agiram de modo antagônico às doses de N sobre a RAF e AFE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of Tecoma stans L. Juss. ex Kunth seeds mass on initial emergence, growth and, seedling development under different light conditions. The seeds were separated in four mass classes and sowed in four replicates of 24 seeds for each class, under full sun and canopy shade. Under sun environment was observed a greater percentage of emergence. Heavy seeds presented the greater percentage of emergence under both environments, but a greater rate was observed under canopy shade. One month after the start of experiments, the seedlings at the shade environment presented 100% of mortality. The growth and development seedlings under full sun were noticed for five months. In this period, only in the first three months was possible to observe the effects of Tecoma stans seeds mass on capacity of seedlings to acquire dry mass. The seedlings biomass partitions were similar among the tested mass class. The seedlings of smaller mass tended to a high specific leaf area in relation to the seedlings from large seeds, mainly in the first three months, resulting in a great acquisition of dry mass by these seedlings. In the fourth month, the specific leaf area did not present any tendency. Because the biggest seeds to give rise seedlings with best initial development than smallest seeds can be considered as species reproductive strategy. To produce seeds of different sizes also can be considered as way of species to spread in many microhabitats.