816 resultados para landslides, riskanalysis, landslide hazard, fuzzy-logic
Resumo:
The Oil Measurement Evaluation Laboratory (LAMP), located in the Federal University of Rio Grande do Norte (UFRN), has as main goal to evaluate flow and BS&W meters, where the simulation of a bigger number of operation variable in field, guarantees a less uncertain evaluation. The objective of this work is to purpose a heating system design and implementation, which will control the temperature safely and efficiently in order to evaluate and measure it. Temperature is one of the variables which influence the flow and BS&W accurate measurement, directly affecting the fluid viscosity and density in the experiment. To project the heating system it is of great importance to take the laboratory requirements, conditions and current restrictions into consideration. Three alternatives were evaluated: heat exchanger, internal resistance and external resistance. After the analyses are made in order to choose the best alternative for the heating system in the laboratory, control strategies were determined for it, PID control methods in combination with fuzzy logic were used. Results showed a better performance with fuzzy logic than with classic PID
Resumo:
The sanitation companies from Brazil has a great challenge for the XXI century: seek to mitigate the rate of physical waste (water, chemicals and electricity) and financial waste caused by inefficient operating systems drinking water supply, considering that currently we already face, in some cases, the scarcity of water resources. The supply systems are increasingly complex as they seek to minimize waste and at the same time better serve the growing number of users. However, this technological change is to reduce the complexity of the challenges posed by the need to include users with higher quality and efficiency in services. A major challenge for companies of water supplies is to provide a good quality service contemplating reducing expenditure on electricity. In this situation we developed a research by a method that seeks to control the pressure of the distribution systems that do not have the tank in your setup and the water comes out of the well directly to the distribution system. The method of pressure control (intelligent control) uses fuzzy logic to eliminate the waste of electricity and the leaks from the production of pumps that inject directly into the distribution system, which causes waste of energy when the consumption of households is reduced causing the saturation of the distribution system. This study was conducted at Green Club II condominium, located in the city of Parnamirim, state of Rio Grande do Norte, in order to study the pressure behavior of the output of the pump that injects water directly into the distribution system. The study was only possible because of the need we had to find a solution to some leaks in the existing distribution system and the extensions of the respective condominium residences, which sparked interest in developing a job in order to carry out the experiments contained in this research
Resumo:
The stability of synchronous generators connected to power grid has been the object of study and research for years. The interest in this matter is justified by the fact that much of the electricity produced worldwide is obtained with the use of synchronous generators. In this respect, studies have been proposed using conventional and unconventional control techniques such as fuzzy logic, neural networks, and adaptive controllers to increase the stabilitymargin of the systemduring sudden failures and transient disturbances. Thismaster thesis presents a robust unconventional control strategy for maintaining the stability of power systems and regulation of output voltage of synchronous generators connected to the grid. The proposed control strategy comprises the integration of a sliding surface with a linear controller. This control structure is designed to prevent the power system losing synchronism after a sudden failure and regulation of the terminal voltage of the generator after the fault. The feasibility of the proposed control strategy was experimentally tested in a salient pole synchronous generator of 5 kVA in a laboratory structure
Resumo:
A neural network model for solving constrained nonlinear optimization problems with bounded variables is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are completed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points. The network is shown to be completely stable and globally convergent to the solutions of constrained nonlinear optimization problems. A fuzzy logic controller is incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.
Resumo:
A novel approach for solving robust parameter estimation problems is presented for processes with unknown-but-bounded errors and uncertainties. An artificial neural network is developed to calculate a membership set for model parameters. Techniques of fuzzy logic control lead the network to its equilibrium points. Simulated examples are presented as an illustration of the proposed technique. The result represent a significant improvement over previously proposed methods. (C) 1999 IMACS/Elsevier B.V. B.V. All rights reserved.
Resumo:
The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.
Resumo:
This paper presents the control strategies of nonlinear vehicle suspension using a magnetorheological (MR) damper. We used two different approaches for modeling and control of the mechanical and electrical parts of the suspension systems with the MR damper. First, we have formulated and resolved the control problem in order to design the linear feedback dumping force controller for a nonlinear suspension system. Then the values of the control dumping force functions were transformed into electrical control signals by the application of a fuzzy logic control method. The numerical simulations were provided in order to show the effectiveness of this method for the semi-active control of the quarter-car suspension.
Resumo:
A segurança ocupacional é imprescindível na indústria da construção civil e a análise e avaliação de riscos para a segurança ocupacional (AARSO) é o primeiro e fundamental passo para alcançá-la, baseado na definição e implementação de programas de prevenção. A AARSO é um processo complexo, que implica a consideração e análise de muitos parâmetros quantitativos e/ou qualitativos que são difíceis de quantificar. As metodologias AARSO utilizadas na indústria da construção civil são baseadas em informação sujeita a incerteza (sendo tratada por técnicas probabilísticas e/ou estatísticas), difusa, imprecisa e/ou incompleta. Isso implica algumas limitações, como, por exemplo, obrigar os analistas a estimar parâmetros ou efetuar comparações com outros canteiros de obras (o que afasta do sistema real em estudo). O objetivo inicial deste estudo foi efetuar a pré-validação de um método AARSO, o QRAM, em duas cidades brasileiras, de médio e grande porte.
Resumo:
This work presents a simplified architecture of a neurofuzzy controller for general purpose applications that tries to minimize the processing used in the several stages of hazy modeling of systems. The basic procedures of fuzzification and defuzzification are simplified to the maximum while the inference procedures are computed in a private way. The simplified architecture allows a fast and easy configuration of the neurofuzzy controller and the structuring rules that define the control actions is automatic. Th controller's Limits and performance are standardized and the control actions are previously calculated. For application, the industrial systems of fluid flow control will be considered.
Resumo:
Substitution of fuzzy logic control in an electrical system normally controlled by proportional-integral frequency was studied and analyzed. A linear model of an electrical system, the concepts which govern the theory of fuzzy logic, and the application of this theory to systems control, are briefly presented. The methodology of fuzzy logic was then applied to develop a model for an electrical energy system. The results of the simulation demonstrated that fuzzy logic control eliminated the area frequency error and permitted that only the area experiencing an increase in charge responds to this variation. Based on the results, it is concluded that control based on fuzzy logic is simple, is easy to maintain, is of low cost, and can be used to substitute traditional velocity controllers.
Resumo:
The objective of this work is the development of a methodology for electric load forecasting based on a neural network. Here, it is used Backpropagation algorithm with an adaptive process based on fuzzy logic. This methodology results in fast training, when compared to the conventional formulation of Backpropagation algorithm. Results are presented using data from a Brazilian Electric Company and the performance is very good for the proposal objective.
Resumo:
This paper introduces a method for the supervision and control of devices in electric substations using fuzzy logic and artificial neural networks. An automatic knowledge acquisition process is included which allows the on-line processing of operator actions and the extraction of control rules to replace gradually the human operator. Some experimental results obtained by the application of the implemented software in a simulated environment with random signal generators are presented.
Resumo:
This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.
Resumo:
Let (X, d) be a compact metric space and f: X → X a continuous function and consider the hyperspace (K(X), H) of all nonempty compact subsets of X endowed with the Hausdorff metric induced by d. Let f̄: K(X) → K (X) be defined by f̄(A) = {f(a)/a ∈ A} the natural extension of f to K(X), then the aim of this work is to study the dynamics of f when f is turbulent (erratic, respectively) and its relationships.
Resumo:
The design of full programmable type-2 membership function circuit is presented in this paper. This circuit is used to implement the fuzzifier block of Type-2 Fuzzy Logic Controller chip. In this paper the type-2 fuzzy set was obtained by blurring the width of the type-1 fuzzy set. This circuit allows programming the height and the shape of the membership function. It operates in current mode, with supply voltage of 3.3V. The simulation results of interval type-2 membership function circuit have been done in CMOS 0.35μm technology using Mentor Graphics software. © 2011 IEEE.