947 resultados para ion-neutral reactions, astrochemistry, interstellar medium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viscous modifications to the thermal distributions of quark-antiquarks and gluons have been studied in a quasiparticle description of the quark-gluon-plasma medium created in relativistic heavy-ion collision experiments. The model is described in terms of quasipartons that encode the hot QCD medium effects in their respective effective fugacities. Both shear and bulk viscosities have been taken in to account in the analysis, and the modifications to thermal distributions have been obtained by modifying the energy-momentum tensor in view of the nontrivial dispersion relations for the gluons and quarks. The interactions encoded in the equation of state induce significant modifications to the thermal distributions. As an implication, the dilepton production rate in the q (q) over bar annihilation process has been investigated. The equation of state is found to have a significant impact on the dilepton production rate along with the viscosities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of amorphous carbon (a-C) deposited using a filtered cathodic vacuum arc as a function of the ion energy and substrate temperature are reported. The sp3 fraction was found to strongly depend on the ion energy, giving a highly sp3 bonded a-C denoted as tetrahedral amorphous carbon (ta-C) at ion energies around 100 eV. The optical band gap was found to follow similar trends to other diamondlike carbon films, varying almost linearly with sp2 fraction. The dependence of the electronic properties are discussed in terms of models of the electronic structure of a-C. The structure of ta-C was also strongly dependent on the deposition temperature, changing sharply to sp2 above a transition temperature, T1, of ≈200°C. Furthermore, T1 was found to decrease with increasing ion energy. Most film properties, such as compressive stress and plasmon energy, were correlated to the sp3 fraction. However, the optical and electrical properties were found to undergo a more gradual transition with the deposition temperature which we attribute to the medium range order of sp2 sites. We attribute the variation in film properties with the deposition temperature to diffusion of interstitials to the surface above T1 due to thermal activation, leading to the relaxation of density in context of a growth model. © 1997 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this review we summarize recent developments in inter- and intramolecular enantioselective carbolithiation reactions carried out in the presence of a chiral ligand for lithium, such as (-)-sparteine, to promote facial selection on a C=C bond. This is an attractive approach for the construction of new carbon-carbon bonds in an asymmetric fashion, with the possibility of introducing further functionalization on the molecule by trapping the reactive organolithium intermediates with electrophiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Lynch syndrome (LS) is an autosomal dominant inherited cancer syndrome characterized by early onset cancers of the colorectum, endometrium and other tumours. A significant proportion of DNA variants in LS patients are unclassified. Reports on the pathogenicity of the c.1852_1853AA>GC (p.Lys618Ala) variant of the MLH1 gene are conflicting. In this study, we provide new evidence indicating that this variant has no significant implications for LS. Methods: The following approach was used to assess the clinical significance of the p.Lys618Ala variant: frequency in a control population, case-control comparison, co-occurrence of the p.Lys618Ala variant with a pathogenic mutation, co-segregation with the disease and microsatellite instability in tumours from carriers of the variant. We genotyped p.Lys618Ala in 1034 individuals (373 sporadic colorectal cancer [CRC] patients, 250 index subjects from families suspected of having LS [revised Bethesda guidelines] and 411 controls). Three well-characterized LS families that fulfilled the Amsterdam II Criteria and consisted of members with the p.Lys618Ala variant were included to assess co-occurrence and co-segregation. A subset of colorectal tumour DNA samples from 17 patients carrying the p.Lys618Ala variant was screened for microsatellite instability using five mononucleotide markers. Results: Twenty-seven individuals were heterozygous for the p.Lys618Ala variant; nine had sporadic CRC (2.41%), seven were suspected of having hereditary CRC (2.8%) and 11 were controls (2.68%). There were no significant associations in the case-control and case-case studies. The p.Lys618Ala variant was co-existent with pathogenic mutations in two unrelated LS families. In one family, the allele distribution of the pathogenic and unclassified variant was in trans, in the other family the pathogenic variant was detected in the MSH6 gene and only the deleterious variant co-segregated with the disease in both families. Only two positive cases of microsatellite instability (2/17, 11.8%) were detected in tumours from p.Lys618Ala carriers, indicating that this variant does not play a role in functional inactivation of MLH1 in CRC patients. Conclusions: The p.Lys618Ala variant should be considered a neutral variant for LS. These findings have implications for the clinical management of CRC probands and their relatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present measurements of the spatial distribution, kinematics, and physical properties of gas in the circumgalactic medium (CGM) of 2.0<z<2.8 UV color-selected galaxies as well as within the 2<z<3 intergalactic medium (IGM). These measurements are derived from Voigt profile decomposition of the full Lyα and Lyβ forest in 15 high-resolution, high signal-to-noise ratio QSO spectra resulting in a catalog of ∼6000 HI absorbers.

Chapter 2 of this thesis focuses on HI surrounding high-z star-forming galaxies drawn from the Keck Baryonic Structure Survey (KBSS). The KBSS is a unique spectroscopic survey of the distant universe designed to explore the details of the connection between galaxies and intergalactic baryons within the same survey volumes. The KBSS combines high-quality background QSO spectroscopy with large densely-sampled galaxy redshift surveys to probe the CGM at scales of ∼50 kpc to a few Mpc. Based on these data, Chapter 2 presents the first quantitative measurements of the distribution, column density, kinematics, and absorber line widths of neutral hydrogen surrounding high-z star-forming galaxies.

Chapter 3 focuses on the thermal properties of the diffuse IGM. This analysis relies on measurements of the ∼6000 absorber line widths to constrain the thermal and turbulent velocities of absorbing "clouds." A positive correlation between the column density of HI and the minimum line width is recovered and implies a temperature-density relation within the low-density IGM for which higher-density regions are hotter, as is predicted by simple theoretical arguments.

Chapter 4 presents new measurements of the opacity of the IGM and CGM to hydrogen-ionizing photons. The chapter begins with a revised measurement of the HI column density distribution based on this new absorption line catalog that, due to the inclusion of high-order Lyman lines, provides the first statistically robust measurement of the frequency of absorbers with HI column densities 14 ≲ log(NHI/cm-2) ≲ 17.2. Also presented are the first measurements of the column density distribution of HI within the CGM (50 <d < 300 pkpc) of high-z galaxies. These distributions are used to calculate the total opacity of the IGM and IGM+CGM and to revise previous measurements of the mean free path of hydrogen-ionizing photons within the IGM. This chapter also considers the effect of the surrounding CGM on the transmission of ionizing photons out of the sites of active star-formation and into the IGM.

This thesis concludes with a brief discussion of work in progress focused on understanding the distribution of metals within the CGM of KBSS galaxies. Appendix B discusses my contributions to the MOSFIRE instrumentation project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas stoichiometric activation of C-H bonds by complexes of transition metals is becoming increasingly common, selective functionalization of alkanes remains a formidable challenge in organometallic chemistry. The recent advances in catalytic alkane functionalization by transition-metal complexes are summarized in Chapter I.

The studies of the displacement of pentafluoropyridine in [(tmeda)Pt(CH_3)(NC_5F_5)][BAr^f_4] (1) with γ- tetrafluoropicoline, a very poor nucleophile, are reported in Chapter II. The ligand substitution occurs by a dissociative interchange mechanism. This result implies that dissociative loss of pentafluoropyridine is the rate-limiting step in the C-H activation reactions of 1.

Oxidation of dimethylplatinum(II) complexes (N-N)Pt(CH_3)_2 (N-N = tmeda(1), α-diimines) by dioxygen is described in Chapter III. Mechanistic studies suggest a two-step mechanism. First, a hydroperoxoplatinum(IV) complex is formed in a reaction between (N-N)Pt(CH_3)_2 and dioxygen. Next, the hydroperoxy complex reacts with a second equivalent of (N-N)Pt(CH_3)_2 to afford the final product, (N-N)Pt(OH)(OCH_3)(CH_3)_2. The hydroperoxy intermediate, (tmeda)Pt(OOH)(OCH_3)(CH_3)_2 (2), was isolated and characterized. The reactivity of 2 with several dime thylplatinum(II) complexes is reported.

The studies described in Chapter IV are directed toward the development of a platinum(II)-catalyzed oxidative alkane dehydrogenation. Stoichiometric conversion of alkanes (cyclohexane, ethane) to olefins (cyclohexene, ethylene) is achieved by C-H activation with [(N-N)Pt(CH_3)(CF_3CH_2OH)]BF_4 (1, N-N is N,N'-bis(3,5-di-t- butylphenyl)-1,4-diazabutadiene) which results in the formation of olefin hydride complexes. The first step in the C-H activation reaction is formation of a platinum(II) alkyl which undergoes β-hydrogen elimination to afford the olefin hydride complex. The cationic ethylplatinum(II) intermediate can be generated in situ by treating diethylplatinum(II) compounds with acids. Treatment of (phen)PtEt_2 with [H(OEt_2)_2]Bar^f_4 at low temperatures resulted in the formation of a mixture of [(phen)PtEt(OEt_2)]Bar^f_4 (8) and [(phen)Pt(C_2H_4)H] Bar^f_4 (7). The cationic olefin complexes are unreactive toward dioxygen or hydrogen peroxide. Since the success of the overall catalytic cycle depends on our ability to oxidize the olefin hydride complexes, a series of neutral olefin complexes of platinum(II) with monoanionic ligands (derivatives of pyrrole-2-carboxyaldehyde N-aryl imines) was prepared. Unfortunately, these are also stable to oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate of electron transport between distant sites was studied. The rate depends crucially on the chemical details of the donor, acceptor, and surrounding medium. These reactions involve electron tunneling through the intervening medium and are, therefore, profoundly influenced by the geometry and energetics of the intervening molecules. The dependence of rate on distance was considered for several rigid donor-acceptor "linkers" of experimental importance. Interpretation of existing experiments and predictions for new experiments were made.

The electronic and nuclear motion in molecules is correlated. A Born-Oppenheimer separation is usually employed in quantum chemistry to separate this motion. Long distance electron transfer rate calculations require the total donor wave function when the electron is very far from its binding nuclei. The Born-Oppenheimer wave functions at large electronic distance are shown to be qualitatively wrong. A model which correctly treats the coupling was proposed. The distance and energy dependence of the electron transfer rate was determined for such a model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the origin of life on Earth has long fascinated the minds of the global community, and has been a driving factor in interdisciplinary research for centuries. Beyond the pioneering work of Darwin, perhaps the most widely known study in the last century is that of Miller and Urey, who examined the possibility of the formation of prebiotic chemical precursors on the primordial Earth [1]. More recent studies have shown that amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth, are present in meteoritic samples, and that the molecules extracted from the meteorites display isotopic signatures indicative of an extraterrestrial origin [2]. The most recent major discovery in this area has been the detection of glycine (NH2CH2COOH), the simplest amino acid, in pristine cometary samples returned by the NASA STARDUST mission [3]. Indeed, the open questions left by these discoveries, both in the public and scientific communities, hold such fascination that NASA has designated the understanding of our "Cosmic Origins" as a key mission priority.

Despite these exciting discoveries, our understanding of the chemical and physical pathways to the formation of prebiotic molecules is woefully incomplete. This is largely because we do not yet fully understand how the interplay between grain-surface and sub-surface ice reactions and the gas-phase affects astrophysical chemical evolution, and our knowledge of chemical inventories in these regions is incomplete. The research presented here aims to directly address both these issues, so that future work to understand the formation of prebiotic molecules has a solid foundation from which to work.

From an observational standpoint, a dedicated campaign to identify hydroxylamine (NH2OH), potentially a direct precursor to glycine, in the gas-phase was undertaken. No trace of NH2OH was found. These observations motivated a refinement of the chemical models of glycine formation, and have largely ruled out a gas-phase route to the synthesis of the simplest amino acid in the ISM. A molecular mystery in the case of the carrier of a series of transitions was resolved using observational data toward a large number of sources, confirming the identity of this important carbon-chemistry intermediate B11244 as l-C3H+ and identifying it in at least two new environments. Finally, the doubly-nitrogenated molecule carbodiimide HNCNH was identified in the ISM for the first time through maser emission features in the centimeter-wavelength regime.

In the laboratory, a TeraHertz Time-Domain Spectrometer was constructed to obtain the experimental spectra necessary to search for solid-phase species in the ISM in the THz region of the spectrum. These investigations have shown a striking dependence on large-scale, long-range (i.e. lattice) structure of the ices on the spectra they present in the THz. A database of molecular spectra has been started, and both the simplest and most abundant ice species, which have already been identified, as well as a number of more complex species, have been studied. The exquisite sensitivity of the THz spectra to both the structure and thermal history of these ices may lead to better probes of complex chemical and dynamical evolution in interstellar environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen-containing heterocycles, such as indolines and pyrroloindolines, are prevalent in a variety of diverse natural products, many of which exhibit remarkable biological activities. These frameworks have inspired innovative research aimed at discovering novel methods for their stereoselective preparation.

We have developed an enantioselective synthesis of pyrroloindolines based on a formal (3 + 2) cycloaddition of indoles and 2-amidoacrylates. This reaction is promoted by (R)-BINOL•SnCl4; this complex is a Lewis acid-assisted Brønsted acid that effects a highly face-selective catalyst-controlled protonation of an enolate. Mechanistic studies also determined that the initial product of this reaction is an indolinium ion, which upon aqueous workup undergoes cyclization to the pyrroloindoline.

Based on this result, we investigated alternative nucleophiles to trap the indolinium ion. First, addition of sodium borohydride to the optimized reaction conditions yields indoline-containing amino acid derivatives.

Next, carbon nucleophiles were explored. Indole substrates incorporating a tethered alkene were exposed to the conditions for the formal (3 + 2) cycloaddition, resulting in a conjugate addition/asymmetric protonation/Prins cyclization cascade. In this transformation, the indolinium ion is attacked by the olefin, and the resulting carbocation is quenched by a chloride ion. Zirconium tetrachloride was found to be the optimal Lewis acid. Stoichiometric proton and chloride sources were also found to be crucial for reactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although numerous theoretical efforts have been put forth, a systematic, unified and predictive theoretical framework that is able to capture all the essential physics of the interfacial behaviors of ions, such as the Hofmeister series effect, Jones-Ray effect and the salt effect on the bubble coalescence remain an outstanding challenge. The most common approach to treating electrostatic interactions in the presence of salt ions is the Poisson-Boltzmann (PB) theory. However, there are many systems for which the PB theory fails to offer even a qualitative explanation of the behavior, especially for ions distributed in the vicinity of an interface with dielectric contrast between the two media (like the water-vapor/oil interface). A key factor missing in the PB theory is the self energy of the ion.

In this thesis, we develop a self-consistent theory that treats the electrostatic self energy (including both the short-range Born solvation energy and the long-range image charge interactions), the nonelectrostatic contribution of the self energy, the ion-ion correlation and the screening effect systematically in a single framework. By assuming a finite charge spread of the ion instead of using the point-charge model, the self energy obtained by our theory is free of the divergence problems and gives a continuous self energy across the interface. This continuous feature allows ions on the water side and the vapor/oil side of the interface to be treated in a unified framework. The theory involves a minimum set of parameters of the ion, such as the valency, radius, polarizability of the ions, and the dielectric constants of the medium, that are both intrinsic and readily available. The general theory is first applied to study the thermodynamic property of the bulk electrolyte solution, which shows good agreement with the experiment result for predicting the activity coefficient and osmotic coefficient.

Next, we address the effect of local Born solvation energy on the bulk thermodynamics and interfacial properties of electrolyte solution mixtures. We show that difference in the solvation energy between the cations and anions naturally gives rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The miscibility of the mixture can either increases or decreases depending on the competition between the solvation energy and translation entropy of the ions. The interfacial tension shows a non-monotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations, and decreases approximately as the square root of the salt concentration for dilute solutions, which is in agreement with the Jones-Ray effect observed in experiment.

Next, we investigate the image effects on the double layer structure and interfacial properties near a single charged plate. We show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. The image charge effect is then studied for electrolyte solutions between two plates. For two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like- charge attraction.

Then, we study the inhomogeneous screening effect near the dielectric interface due to the anisotropic and nonuniform ion distribution. We show that the double layer structure and interfacial properties is drastically affected by the inhomogeneous screening if the bulk Debye screening length is comparable or smaller than the Bjerrum length. The width of the depletion layer is characterized by the Bjerrum length, independent of the salt concentration. We predict that the negative adsorption of ions at the interface increases linearly with the salt concentration, which cannot be captured by either the bulk screening approximation or the WKB approximation. For asymmetric salt, the inhomogeneous screening enhances the charge separation in the induced double layer and significantly increases the value of the surface potential.

Finally, to account for the ion specificity, we study the self energy of a single ion across the dielectric interface. The ion is considered to be polarizable: its charge distribution can be self-adjusted to the local dielectric environment to minimize the self energy. Using intrinsic parameters of the ions, such as the valency, radius, and polarizability, we predict the specific ion effect on the interfacial affinity of halogen anions at the water/air interface, and the strong adsorption of hydrophobic ions at the water/oil interface, in agreement with experiments and atomistic simulations.

The theory developed in this work represents the most systematic theoretical technique for weak-coupling electrolytes. We expect the theory to be more useful for studying a wide range of structural and dynamic properties in physicochemical, colloidal, soft-matter and biophysical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall goal of the joint research project is to relate the chemical reactions involved in the formation of organo-aluminium complexes under acid conditions to their toxic effects on the physiology of aquatic organisms. Finally, this research is intended to predict toxic effects arising from acidity and aluminium under varying environmental conditions. This interim report examines the chemical modelling of ion-binding by humic substances where a computer model has been developed and is being tested using field data, and conditions required for the precipitation of aluminium in surface waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an alternative medium of transparent upconverting colloid containing lanthanide ion doped NaYF4 nanocrystals for three-dimensional (3D) volumetric display. The colloids exhibit tunable upconversion luminescence with a wide spectrum of colors by adjusting the doping concentrations of the nanocrystals and the compositions of the colloids. Our preliminary experimental result indicates that an upconverting colloid-based 3D volumetric display using a convergent, near infrared laser beam to induce a localized luminescent spot near the focus is technically feasible. Therefore arbitrary 3D objects can be created inside the upconverting colloid by use of computer controlled 3D scanning systems. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inibidores de corrosão são substâncias que quando adicionadas a um meio agressivo, diminuem ou previnem a reação de oxidação de um metal com este meio e/ou as reações de redução de espécies presentes no meio. Para a inibição da corrosão de cobre e suas ligas em meios ácidos ou neutros, o inibidor mais empregado é o benzotriazol (BTAH), o qual forma complexos com os íons Cu (I) e Cu (II) na superfície do metal, diminuindo o processo corrosivo. A preocupação com a preservação ambiental e a toxicidade de inibidores de corrosão vem sendo discutida na literatura. Vários estudos têm-se intensificado usando aminoácidos, como proposta para substituição ao BTAH, considerado tóxico. Entre os aminoácidos estudados, dois apresentavam enxofre em suas moléculas (cisteína e metionina) e um outro sem heteroátomo na cadeira lateral (glicina). As concentrações variaram entre 10-2 a 10-4 mol/L e pH da solução entre 7,2 e 8,4. Foram realizadas medidas gravimétricas (ensaios de imersão total) e técnicas eletroquímicas, tais como polarização potenciodinâmica e espectroscopia de impedância eletroquímica. A caracterização morfológica da superfície do substrato após os ensaios de imersão total (743 horas) foi feita por meio de microscopia eletrônica de varredura (MEV), espectroscopia de raios X por dispersão de energia (EDS ou EDX) e difração de raios X (DRX). Embora os resultados com aminoácidos tenham sido sempre muito inferiores àqueles obtidos na presença de BTAH, comportamentos semelhantes em função da concentração dos aminoácidos puderam ser observados pelos diagramas de Nyquist. Contudo, com exceção dos resultados verificados para o meio contendo cisteína 10-2 mol/L, todas as eficiências de inibição para os meios contendo aminoácidos, obtidas pelos ensaios de imersão total, foram negativas, mostrando que o tempo de exposição também pode ser relevante para o desempenho destes inibidores. Entre todos os aminoácidos testados, os meios contendo glicina apresentaram os piores desempenhos anticorrosivos, inclusive acelerando o processo de dissolução anódica do cobre. Esse resultado pode estar relacionado à faixa de pH das soluções testadas e à solubilidade dos complexos de cobre formados com os aminoácidos, mostrando que uma faixa ótima de pH também deve ser assegurada para aprimorar a ação destes aminoácidos como inibidores de corrosão

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.