904 resultados para intuitive robot programming
Resumo:
Autonomous vehicles are increasingly being used in mission-critical applications, and robust methods are needed for controlling these inherently unreliable and complex systems. This thesis advocates the use of model-based programming, which allows mission designers to program autonomous missions at the level of a coach or wing commander. To support such a system, this thesis presents the Spock generative planner. To generate plans, Spock must be able to piece together vehicle commands and team tactics that have a complex behavior represented by concurrent processes. This is in contrast to traditional planners, whose operators represent simple atomic or durative actions. Spock represents operators using the RMPL language, which describes behaviors using parallel and sequential compositions of state and activity episodes. RMPL is useful for controlling mobile autonomous missions because it allows mission designers to quickly encode expressive activity models using object-oriented design methods and an intuitive set of activity combinators. Spock also is significant in that it uniformly represents operators and plan-space processes in terms of Temporal Plan Networks, which support temporal flexibility for robust plan execution. Finally, Spock is implemented as a forward progression optimal planner that walks monotonically forward through plan processes, closing any open conditions and resolving any conflicts. This thesis describes the Spock algorithm in detail, along with example problems and test results.
Resumo:
Most Artificial Intelligence (AI) work can be characterized as either ``high-level'' (e.g., logical, symbolic) or ``low-level'' (e.g., connectionist networks, behavior-based robotics). Each approach suffers from particular drawbacks. High-level AI uses abstractions that often have no relation to the way real, biological brains work. Low-level AI, on the other hand, tends to lack the powerful abstractions that are needed to express complex structures and relationships. I have tried to combine the best features of both approaches, by building a set of programming abstractions defined in terms of simple, biologically plausible components. At the ``ground level'', I define a primitive, perceptron-like computational unit. I then show how more abstract computational units may be implemented in terms of the primitive units, and show the utility of the abstract units in sample networks. The new units make it possible to build networks using concepts such as long-term memories, short-term memories, and frames. As a demonstration of these abstractions, I have implemented a simulator for ``creatures'' controlled by a network of abstract units. The creatures exist in a simple 2D world, and exhibit behaviors such as catching mobile prey and sorting colored blocks into matching boxes. This program demonstrates that it is possible to build systems that can interact effectively with a dynamic physical environment, yet use symbolic representations to control aspects of their behavior.
Resumo:
Recent developments in the area of reinforcement learning have yielded a number of new algorithms for the prediction and control of Markovian environments. These algorithms, including the TD(lambda) algorithm of Sutton (1988) and the Q-learning algorithm of Watkins (1989), can be motivated heuristically as approximations to dynamic programming (DP). In this paper we provide a rigorous proof of convergence of these DP-based learning algorithms by relating them to the powerful techniques of stochastic approximation theory via a new convergence theorem. The theorem establishes a general class of convergent algorithms to which both TD(lambda) and Q-learning belong.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
We study the preconditioning of symmetric indefinite linear systems of equations that arise in interior point solution of linear optimization problems. The preconditioning method that we study exploits the block structure of the augmented matrix to design a similar block structure preconditioner to improve the spectral properties of the resulting preconditioned matrix so as to improve the convergence rate of the iterative solution of the system. We also propose a two-phase algorithm that takes advantage of the spectral properties of the transformed matrix to solve for the Newton directions in the interior-point method. Numerical experiments have been performed on some LP test problems in the NETLIB suite to demonstrate the potential of the preconditioning method discussed.
Resumo:
Augmented Reality (AR) is an emerging technology that utilizes computer vision methods to overlay virtual objects onto the real world scene so as to make them appear to co-exist with the real objects. Its main objective is to enhance the user’s interaction with the real world by providing the right information needed to perform a certain task. Applications of this technology in manufacturing include maintenance, assembly and telerobotics. In this paper, we explore the potential of teaching a robot to perform an arc welding task in an AR environment. We present the motivation, features of a system using the popular ARToolkit package, and a discussion on the issues and implications of our research.
Resumo:
We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the (Renegar-) condition measure C(d) of the data instance, (iii) a measure of the near-absence of strict complementarity of the optimal solution, and (iv) the level of degeneracy of the optimal solution. We compute these measures for the SDPLIB suite problem instances and measure the correlation between these measures and IPM iteration counts (solved using the software SDPT3) when the measures have finite values. Our conclusions are roughly as follows: the aggregate geometry measure is highly correlated with IPM iterations (CORR = 0.896), and is a very good predictor of IPM iterations, particularly for problem instances with solutions of small norm and aspect ratio. The condition measure C(d) is also correlated with IPM iterations, but less so than the aggregate geometry measure (CORR = 0.630). The near-absence of strict complementarity is weakly correlated with IPM iterations (CORR = 0.423). The level of degeneracy of the optimal solution is essentially uncorrelated with IPM iterations.
Resumo:
Aquest projecte pretén presentar de forma clara i detallada l’estructura i el funcionament del robot així com dels components que el conformen. Aquesta informació és de vital importància a l’hora de desenvolupar aplicacions per al robot. Un cop descrites les característiques del robot s’analitzaran les eines necessàries i/o disponibles per poder desenvolupar programari per cada nivell de la forma més senzilla i eficient possible. Posteriorment s’analitzaran els diferents nivells de programació i se’n contrastaran els avantatges i els inconvenients de cada un. Aquest anàlisi es començarà fent pel nivell més alt i anirà baixant amb la intenció de no entrar en nivells més baixos del necessari. Baixar un nivell en la programació suposa haver de crear aplicacions sempre compatibles amb els nivells superiors de forma que com més es baixa més augmenta la complexitat. A partir d’aquest anàlisi s’ha arribat a la conclusió que per tal d’aprofitar totes les prestacions del robot és precís arribar a programar en el nivell més baix del robot. Finalment l’objectiu és obtenir una sèrie de programes per cada nivell que permetin controlar el robot i fer-lo seguir senzilles trajectòries
Resumo:
El Grup de Visió per Computador i Robòtica (VICOROB) del departament d'Electrònica, Informàtica i Automàtica de la Universitat de Girona investiga en el camp de la robòtica submarina. Al CIRS (Centre d’Investigació en Robòtica Submarina), laboratori que forma part del grup VICOROB, el robot submarí Ictineu és la principal eina utilitzada per a desenvolupar els projectes de recerca. Recentment, el CIRS ha adquirit un nou sistema de sensors d' orientació basat en una unitat inercial i un giroscopi de fibra òptica. Aquest projecte pretén realitzar un estudi d' aquests dispositius i integrar-los al robot Ictineu. D' altra banda, aprofitant les característiques d’aquests sensors giroscopics i les mesures d' un sonar ja integrat al robot, es vol desenvolupar un sistema de localització capaç de determinar la posició del robot en el pla horitzontal de la piscina en temps real
Resumo:
Els objectius del projecte són: realitzar un intèrpret de comandes en VAL3 que rebi les ordres a través d’una connexió TCP/IP; realitzar una toolbox de Matlab per enviar diferents ordres mitjançant una connexió TCP/IP; adquirir i processar mitjançant Matlab imatges de la càmera en temps real i detectar la posició d’objectes artificials mitjançant la segmentació per color i dissenyar i realitzar una aplicació amb Matlab que reculli peces detectades amb la càmera. L’abast del projecte inclou: l’estudi del llenguatge de programació VAL3 i disseny de l’ intèrpret de comandes, l’estudi de les llibreries de Matlab per comunicació mitjançant TCP/IP, per l’adquisició d’imatges, pel processament d’imatges i per la programació en C; el disseny de la aplicació recol·lectora de peces i la implementació de: un intèrpret de comandes en VAL3, la toolbox pel control del robot STAUBLI en Matlab i la aplicació recol·lectora de peces mitjançant el processament d’imatges en temps real també en Matlab
Resumo:
L’objectiu d’aquest projecte/treball fi de carrera es estudiar els propulsors i el seu protocol de comunicació proporcionant informació útil a l’hora de dissenyar i construir el robot subaquàtic que implementi els propulsors
Resumo:
The estimation of camera egomotion is a well established problem in computer vision. Many approaches have been proposed based on both the discrete and the differential epipolar constraint. The discrete case is mainly used in self-calibrated stereoscopic systems, whereas the differential case deals with a unique moving camera. The article surveys several methods for mobile robot egomotion estimation covering more than 0.5 million samples using synthetic data. Results from real data are also given