945 resultados para initialization uncertainty
Resumo:
Genome-wide association studies (GWAS) are used to discover genes underlying complex, heritable disorders for which less powerful study designs have failed in the past. The number of GWAS has skyrocketed recently with findings reported in top journals and the mainstream media. Mircorarrays are the genotype calling technology of choice in GWAS as they permit exploration of more than a million single nucleotide polymorphisms (SNPs)simultaneously. The starting point for the statistical analyses used by GWAS, to determine association between loci and disease, are genotype calls (AA, AB, or BB). However, the raw data, microarray probe intensities, are heavily processed before arriving at these calls. Various sophisticated statistical procedures have been proposed for transforming raw data into genotype calls. We find that variability in microarray output quality across different SNPs, different arrays, and different sample batches has substantial inuence on the accuracy of genotype calls made by existing algorithms. Failure to account for these sources of variability, GWAS run the risk of adversely affecting the quality of reported findings. In this paper we present solutions based on a multi-level mixed model. Software implementation of the method described in this paper is available as free and open source code in the crlmm R/BioConductor.
Resumo:
Recently, Branzei, Dimitrov, and Tijs (2003) introduced cooperative interval-valued games. Among other insights, the notion of an interval core has been coined and proposed as a solution concept for interval-valued games. In this paper we will present a general mathematical programming algorithm which can be applied to find an element in the interval core. As an example, we discuss lot sizing with uncertain demand to provide an application for interval-valued games and to demonstrate how interval core elements can be computed. Also, we reveal that pitfalls exist if interval core elements are computed in a straightforward manner by considering the interval borders separately.
Resumo:
This study compared four alternative approaches (Taylor, Fieller, percentile bootstrap, and bias-corrected bootstrap methods) to estimating confidence intervals (CIs) around cost-effectiveness (CE) ratio. The study consisted of two components: (1) Monte Carlo simulation was conducted to identify characteristics of hypothetical cost-effectiveness data sets which might lead one CI estimation technique to outperform another. These results were matched to the characteristics of an (2) extant data set derived from the National AIDS Demonstration Research (NADR) project. The methods were used to calculate (CIs) for data set. These results were then compared. The main performance criterion in the simulation study was the percentage of times the estimated (CIs) contained the “true” CE. A secondary criterion was the average width of the confidence intervals. For the bootstrap methods, bias was estimated. ^ Simulation results for Taylor and Fieller methods indicated that the CIs estimated using the Taylor series method contained the true CE more often than did those obtained using the Fieller method, but the opposite was true when the correlation was positive and the CV of effectiveness was high for each value of CV of costs. Similarly, the CIs obtained by applying the Taylor series method to the NADR data set were wider than those obtained using the Fieller method for positive correlation values and for values for which the CV of effectiveness were not equal to 30% for each value of the CV of costs. ^ The general trend for the bootstrap methods was that the percentage of times the true CE ratio was contained in CIs was higher for the percentile method for higher values of the CV of effectiveness, given the correlation between average costs and effects and the CV of effectiveness. The results for the data set indicated that the bias corrected CIs were wider than the percentile method CIs. This result was in accordance with the prediction derived from the simulation experiment. ^ Generally, the bootstrap methods are more favorable for parameter specifications investigated in this study. However, the Taylor method is preferred for low CV of effect, and the percentile method is more favorable for higher CV of effect. ^
Resumo:
The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of root s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K-s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.