Quantifying uncertainty in cost effectiveness analyses


Autoria(s): Johnson, Ana Paula
Data(s)

01/01/1998

Resumo

This study compared four alternative approaches (Taylor, Fieller, percentile bootstrap, and bias-corrected bootstrap methods) to estimating confidence intervals (CIs) around cost-effectiveness (CE) ratio. The study consisted of two components: (1) Monte Carlo simulation was conducted to identify characteristics of hypothetical cost-effectiveness data sets which might lead one CI estimation technique to outperform another. These results were matched to the characteristics of an (2) extant data set derived from the National AIDS Demonstration Research (NADR) project. The methods were used to calculate (CIs) for data set. These results were then compared. The main performance criterion in the simulation study was the percentage of times the estimated (CIs) contained the “true” CE. A secondary criterion was the average width of the confidence intervals. For the bootstrap methods, bias was estimated. ^ Simulation results for Taylor and Fieller methods indicated that the CIs estimated using the Taylor series method contained the true CE more often than did those obtained using the Fieller method, but the opposite was true when the correlation was positive and the CV of effectiveness was high for each value of CV of costs. Similarly, the CIs obtained by applying the Taylor series method to the NADR data set were wider than those obtained using the Fieller method for positive correlation values and for values for which the CV of effectiveness were not equal to 30% for each value of the CV of costs. ^ The general trend for the bootstrap methods was that the percentage of times the true CE ratio was contained in CIs was higher for the percentile method for higher values of the CV of effectiveness, given the correlation between average costs and effects and the CV of effectiveness. The results for the data set indicated that the bias corrected CIs were wider than the percentile method CIs. This result was in accordance with the prediction derived from the simulation experiment. ^ Generally, the bootstrap methods are more favorable for parameter specifications investigated in this study. However, the Taylor method is preferred for low CV of effect, and the percentile method is more favorable for higher CV of effect. ^

Identificador

http://digitalcommons.library.tmc.edu/dissertations/AAI9912742

Idioma(s)

EN

Publicador

DigitalCommons@The Texas Medical Center

Fonte

Texas Medical Center Dissertations (via ProQuest)

Palavras-Chave #Economics, General|Health Sciences, Public Health|Health Sciences, Health Care Management
Tipo

text