968 resultados para highly active
Resumo:
HIV type 1 (HIV-1) drug resistance mutations were selected during antiretroviral therapy successfully suppressing plasma HIV-1 RNA to <50 copies/ml. New resistant mutant subpopulations were identified by clonal sequencing analyses of viruses cultured from blood cells. Drug susceptibility tests showed that biological clones of virus with the mutations acquired during successful therapy had increased resistance. Each of the five subjects with new resistant mutants had evidence of some residual virus replication during highly active antiretroviral therapy (HAART), based on transient episodes of plasma HIV-1 RNA > 50 copies/ml and virus env gene sequence changes. Each had received a suboptimal regimen before starting HAART. Antiretroviral-resistant HIV-1 can be selected from residual virus replication during HAART in the absence of sustained rebound of plasma HIV-1 RNA.
Resumo:
Long-term aging of potato (Solanum tuberosum) seed-tubers resulted in a loss of patatin (40 kD) and a cysteine-proteinase inhibitor, potato multicystatin (PMC), as well as an increase in the activities of 84-, 95-, and 125-kD proteinases. Highly active, additional proteinases (75, 90, and 100 kD) appeared in the oldest tubers. Over 90% of the total proteolytic activity in aged tubers was sensitive to trans-epoxysuccinyl-l-leucylamido (4-guanidino) butane or leupeptin, whereas pepstatin was the most effective inhibitor of proteinases in young tubers. Proteinases in aged tubers were also inhibited by crude extracts or purified PMC from young tubers, suggesting that the loss of PMC was responsible for the age-induced increase in proteinase activity. Nonenzymatic oxidation, glycation, and deamidation of proteins were enhanced by aging. Aged tubers developed “daughter” tubers that contained 3-fold more protein than “mother” tubers, with a polypeptide profile consistent with that of young tubers. Although PMC and patatin were absent from the older mother tubers, both proteins were expressed in the daughter tubers, indicating that aging did not compromise the efficacy of genes encoding PMC and patatin. Unlike the mother tubers, proteinase activity in daughter tubers was undetectable. Our results indicate that tuber aging nonenzymatically modifies proteins, which enhances their susceptibility to breakdown; we also identify a role for PMC in regulating protein turnover in potato tubers.
Resumo:
The success of highly active anti-retroviral therapy (HAART) has inspired new concepts for eliminating HIV from infected individuals. A major obstacle is the persistence of long-lived reservoirs of latently infected cells that might become activated at some time after cessation of therapy. We propose that, in the context of treatment strategies to deliberately activate and eliminate these reservoirs, hybrid toxins targeted to kill HIV-infected cells be reconsidered in combination with HAART. Such combinations might also prove valuable in protocols aimed at preventing mother-to-child transmission and establishment of infection immediately after exposure to HIV. We suggest experimental approaches in vitro and in animal models to test various issues related to safety and efficacy of this concept.
Resumo:
Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.
Resumo:
NADP-malic enzyme (NADP-ME, EC 1.1.1.40), a key enzyme in C4 photosynthesis, provides CO2 to the bundle-sheath chloroplasts, where it is fixed by ribulose-1,5-bisphosphate carboxylase/oxygenase. We characterized the isoform pattern of NADP-ME in different photosynthetic species of Flaveria (C3, C3-C4 intermediate, C4-like, C4) based on sucrose density gradient centrifugation and isoelectric focusing of the native protein, western-blot analysis of the denatured protein, and in situ immunolocalization with antibody against the 62-kD C4 isoform of maize. A 72-kD isoform, present to varying degrees in all species examined, is predominant in leaves of C3 Flaveria spp. and is also present in stem and root tissue. By immunolabeling, NADP-ME was found to be mostly localized in the upper palisade mesophyll chloroplasts of C3 photosynthetic tissue. Two other isoforms of the enzyme, with molecular masses of 62 and 64 kD, occur in leaves of certain intermediates having C4 cycle activity. The 62-kD isoform, which is the predominant highly active form in the C4 species, is localized in bundle-sheath chloroplasts. Among Flaveria spp. there is a 72-kD constitutive form, a 64-kD form that may have appeared during evolution of C4 metabolism, and a 62-kD form that is necessary for the complete functioning of C4 photosynthesis.
Resumo:
Mg-chelatase catalyzes the ATP-dependent insertion of Mg2+ into protoporphyrin-IX to form Mg-protoporphyrin-IX. This is the first step unique to chlorophyll synthesis, and it lies at the branch point for porphyrin utilization; the other branch leads to heme. Using the stromal fraction of pea (Pisum sativum L. cv Spring) chloroplasts, we have prepared Mg-chelatase in a highly active (1000 pmol 30 min−1 mg−1) and stable form. The reaction had a lag in the time course, which was overcome by preincubation with ATP. The concentration curves for ATP and Mg2+ were sigmoidal, with apparent Km values for Mg2+ and ATP of 14.3 and 0.35 mm, respectively. The Km for deuteroporphyrin was 8 nm. This Km is 300 times lower than the published porphyrin Km for ferrochelatase. The soluble extract was separated into three fractions by chromatography on blue agarose, followed by size-selective centrifugal ultrafiltration of the column flow-through. All three fractions were required for activity, clearly demonstrating that the plant Mg-chelatase requires at least three protein components. Additionally, only two of the components were required for activation; both were contained in the flow-through from the blue-agarose column.
Resumo:
Agrin is a basal lamina molecule that directs key events in postsynaptic differentiation, most notably the aggregation of acetylcholine receptors (AChRs) on the muscle cell surface. Agrin's AChR clustering activity is regulated by alternative mRNA splicing. Agrin splice forms having inserts at two sites (y and z) in the C-terminal region are highly active, but isoforms lacking these inserts are weakly active. The biochemical consequences of this alternative splicing are unknown. Here, the binding of four recombinant agrin isoforms to heparin, to alpha-dystroglycan (a component of an agrin receptor), and to myoblasts was tested. The presence of a four-amino acid insert at the y site is necessary and sufficient to confer heparin binding ability to agrin. Moreover, the binding of agrin to alpha-dystroglycan is inhibited by heparin when this insert is present. Agrin binding to the cell surface showed analogous properties: heparin inhibits the binding of only those agrin isoforms containing this four-amino acid insert. The results show that alternative splicing of agrin regulates its binding to heparin and suggest that agrin's interaction with alpha-dystroglycan may be modulated by cell surface glycosaminoglycans in an isoform-dependent manner.
Resumo:
A convenient, high yield conversion of doxorubicin to 3'-deamino-3'-(2''-pyrroline-1''-yl)doxorubicin is described. This daunosamine-modified analog of doxorubicin is 500-1000 times more active in vitro than doxorubicin. The conversion is effected by using a 30-fold excess of 4-iodobutyraldehyde in anhydrous dimethylformamide. The yield is higher than 85%. A homolog of this compound, 3'-deamino-3'-(1'',3''-tetrahydropyridine-1''-yl)doxorubicin, was also synthesized by using 5-iodovaleraldehyde. In this homolog, the daunosamine nitrogen is incorporated into a six- instead of a five-membered ring. This analog was 30-50 times less active than its counterpart with a five-membered ring. A similar structure-activity relationship was found when 3'-deamino-3'-(3''-pyrrolidone-1''-yl)doxorubicin (containing a five-membered ring) and 3'-deamino-3'-(3''-piperidone-1''-yl)doxorubicin (with a six-membered ring) were tested in vitro, the former being 5 times more potent than the latter. To further elucidate structure-activity relationships, 3'-deamino-3'-(pyrrolidine-1''-yl)doxorubicin, 3'-deamino-3'-(isoindoline-2''-yl)doxorubicin, 3'-deamino-3'-(2''-methyl-2''-pyrroline-1''-yl)doxorubicin, and 3'-deamino-3'-(3''-pyrroline-1''-yl)doxorubicin were also synthesized and tested. All the analogs were prepared by using reactive halogen compounds for incorporating the daunosamine nitrogen of doxorubicin into a five- or six-membered ring. These highly active antineoplastic agents can be used for incorporation into targeted cytotoxic analogs of luteinizing hormone-releasing hormone intended for cancer therapy.
Resumo:
Establishment of loss-of-function phenotypes is often a key step in determining the biological function of a gene. We describe a procedure to obtain mutant petunia plants in which a specific gene with known sequence is inactivated by the transposable element dTph1. Leaves are collected from batches of 1000 plants with highly active dTph1 elements, pooled according to a three-dimensional matrix, and screened by PCR using a transposon- and a gene-specific primer. In this way individual plants with a dTph1 insertion can be identified by analysis of about 30 PCRs. We found insertion alleles for various genes at a frequency of about 1 in 1000 plants. The plant population can be preserved by selfing all the plants, so that it can be screened for insertions in many genes over a prolonged period.
Resumo:
This paper reviews the present state of the catalytic enantioselective Reformatsky reaction. Advancements in asymmetric versions of this reaction have recently led to a considerable extension of its scope and applicability, principally due to the use of highly active chiral ligands and very specific reaction conditions.
Resumo:
A synthetic procedure to prepare novel materials (surface-mediated fillings) based on robust hierarchical monoliths is reported. The methodology includes the deposition of a (micro- or mesoporous) silica thin film on the support followed by growth of a porous monolithic SiO2 structure. It has been demonstrated that this synthesis is viable for supports of different chemical nature with different inner diameters without shrinkage of the silica filling. The formation mechanism of the surface-mediated fillings is based on a solution/precipitation process and the anchoring of the silica filling to the deposited thin film. The interaction between the two SiO2 structures (monolith and thin film) depends on the porosity of the thin film and yields composite materials with different mechanical stability. By this procedure, capillary microreactors have been prepared and have been proved to be highly active and selective in the total and preferential oxidation of carbon monoxide (TOxCO and PrOxCO).
Resumo:
In this study, we examine the performance of Cu2O and Cu2O/ZnO surfaces in a filter-press electrochemical cell for the continuous electroreduction of CO2 into methanol. The electrodes are prepared by airbrushing the metal particles onto a porous carbon paper and then are electrochemically characterized by cyclic voltammetry analyses. Particular emphasis is placed on evaluating and comparing the methanol production and Faradaic efficiencies at different loadings of Cu2O particles (0.5, 1 and 1.8 mg cm−2), Cu2O/ZnO weight ratios (1:0.5, 1:1 and 1:2) and electrolyte flow rates (1, 2 and 3 ml min−1 cm−2). The electrodes including ZnO in their catalytic surface were stable after 5 h, in contrast with Cu2O-deposited carbon papers that present strong deactivation with time. The maximum methanol formation rate and Faradaic efficiency for Cu2O/ZnO (1:1)-based electrodes, at an applied potential of −1.3 V vs. Ag/AgCl, were r = 3.17 × 10−5 mol m−2 s−1 and FE = 17.7 %, respectively. Consequently, the use of Cu2O–ZnO mixtures may be of application for the continuous electrochemical formation of methanol, although further research is still required in order to develop highly active, selective and stable catalysts the electroreduction of CO2 to methanol.
Resumo:
Hydrophobic Ti-MCM-41 samples prepared by post-synthesis silylation treatment demonstrate to be highly active and selective catalysts in olefins epoxidation by using organic hydroperoxides as oxidizing agents in liquid phase reaction systems. Epoxide yields show important enhancements with increased silylation degrees of the Ti-mesoporous samples. Catalytic studies are combined and correlated with spectroscopic techniques (e.g. XRD, XANES, UV-Visible, 29Si MAS-NMR) and calorimetric measurements to better understand the changes in the surface chemistry of Ti-MCM-41 samples due to the post-synthesis silylation treatment and to ascertain the role of these trimethylsilyl groups incorporated in olefin epoxidation. In such manner, the effect of the organic moieties on solids, and both water and glycol molecules contents on the catalytic activity and selectivity are analyzed in detail. Results show that the hydrophobicity level of the samples is responsible for the decrease in water adsorption and, consequently, the negligible formation of the non-desired glycol during the catalytic process. Thus, catalyst deactivation by glycol poisoning of Ti active sites is greatly diminished, this increasing catalyst stability and leading to practically quantitative production of the corresponding epoxide. The extended use of these hydrophobic Ti-MCM-41 catalysts together with organic hydroperoxides for the highly efficient and selective epoxidation of natural terpenes is also exemplified.
Resumo:
Several motivations have prompted the scientific community towards the application of hybrid magnetic carbon nanocomposites in catalytic wet peroxide oxidation (CWPO) processes. The most relevant literature on this topic is reviewed, with a special focus on the synergies that can arise from the combination of highly active and magnetically separable iron species with the easily tuned properties of carbon-based materials. These are mainly ascribed to increased adsorptive interactions, to good structural stability and low leaching levels of the metal species, and to increased regeneration and dispersion of the active sites, which are promoted by the presence of the carbon-based materials in the composites. The most significant features of carbon materials that may be further explored in the design of improved hybrid magnetic catalysts are also addressed, taking into consideration the experimental knowledge gathered by the authors in their studies and development of carbon-based catalysts for CWPO. The presence of stable metal impurities, basic active sites and sulphur-containing functionalities, as well as high specific surface area, adequate porous texture, adsorptive interactions and structural defects, are shown to increase the activity of carbon materials when applied in CWPO, while the presence of acidic oxygen-containing functionalities has the opposite effect.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014