936 resultados para gene function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Background: A20 and TAX1BP1 interact to negatively regulate NF-
-driven inflammation. A20 expression is altered in F508del/F508del
patients. Here we explore the effect of CFTR and CFTR genotype on A20 and
TAX1BP1expression. The relationship with lung function is also assessed.
Methods: Primary Nasal Epithelial cells (NECs) from CF patients
(F508del/F508del, n=8, R117H/F508del, n=6) and Controls (age-matched,
n=8), and 16HBE14o- cells were investigated. A20 and TAX1BP1 gene
expression was determined by qPCR.
Results: Silencing of CFTR reduced basal A20 expression. Following LPS
stimulation A20 and TAX1BP1 expression was induced in control NECs and
reduced in CF NECs, broadly reflecting the CF genotype: F508del/F508del
had lower expression than R117H/F508del. A20, but not TAX1BP1 expression,
was proportional to FEV1 in all CF patients (r=0.968, p<0.001).
Conclusions: A20 expression is reduced in CF and is proportional to FEV1.
Pending confirmation in a larger study, A20 may prove a novel predictor
of CF inflammation/disease severity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erythropoietin (Epo), a glycoprotein hormone produced principally in the fetal kidney and in the adult liver in response to hypoxia, is the prime regulator of growth and differentiation in erythroid progenitor cells. The regulation of Epo gene expression is not fully understood, but two mechanisms have been proposed. One involves the participation of a heme protein capable of reversible oxygenation and the other depends on the intracellular concentration of reactive oxygen species (ROS), assumed to be a function of pO2. We have investigated the production of Epo in response to three stimuli, hypoxia, cobalt chloride, and the iron chelator desferrioxamine, in Hep3B cells. As expected, hypoxia caused a marked rise in Epo production. When the cells were exposed to the paired stimuli of hypoxia and cobalt no further increase was found. In contrast, chelation of iron under hypoxic conditions markedly enhanced Epo production, suggesting that the two stimuli act by separate pathways. The addition of carbon monoxide inhibited hypoxia-induced Epo production, independent of desferrioxamine concentration. Taken together these data support the concept that pO2 and ROS are sensed independently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PHD finger protein 20 (PHF20) is a transcription factor, which was originally identified in glioma patients. PHF20 appears to be a novel antigen in glioma, and has also termed glioma-expressed antigen 2. PHF20 is thought to contribute to the development of cancers, including glioblastoma, lung cancer, colon cancer and ovarian cancer. However, little is known about the function of PHF20 in various cancers. Here we report that PHF20 contains two consensus sites for protein kinase B (PKB) phosphorylation (RxRxxS/T). PKB can directly phosphorylate PHF20 on Ser291 in vitro and in vivo. It has been shown that PKB participates in the tumor suppressor p53 regulated gene expression program and has a direct effect on p21 regulation after DNA damage. UV-induced DNA damage results in accumulation of p53 and PKB activation. Interestingly, PKB-mediated PHF20 phosphorylation led to an inhibition of p53 induction following UV treatment, leading to the reduction of p21 transcriptional activity. Using anti PHF20 and anti pPKB (S473) antibodies, these events were mapped in various human cancer tissues. Taken together, these data suggest that PHF20 is a novel substrate for PKB and its phosphorylation by PKB plays an important role in tumorigenesis via regulating of p53 mediated signaling. © 2012 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex network of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha fusion proteins have been reported to act as part of a repressor complex during myeloid cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yersinia enterocolitica serotype O:9 is a gram-negative enteropathogen that infects animals and humans. The role of lipopolysaccharide (LPS) in Y. enterocolitica O:9 pathogenesis, however, remains unclear. The O:9 LPS consists of lipid A to which is linked the inner core oligosaccharide, serving as an attachment site for both the outer core (OC) hexasaccharide and the O-polysaccharide (OPS; a homopolymer of N-formylperosamine). In this work, we cloned the OPS gene cluster of O:9 and identified 12 genes organized into four operons upstream of the gnd gene. Ten genes were predicted to encode glycosyltransferases, the ATP-binding cassette polysaccharide translocators, or enzymes required for the biosynthesis of GDP-N-formylperosamine. The two remaining genes within the OPS gene cluster, galF and galU, were not ascribed a clear function in OPS biosynthesis; however, the latter gene appeared to be essential for O:9. The biological functions of O:9 OPS and OC were studied using isogenic mutants lacking one or both of these LPS parts. We showed that OPS and OC confer resistance to human complement and polymyxin B; the OPS effect on polymyxin B resistance could be observed only in the absence of OC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Posttranslational processing of proadrenomedullin generates two biologically active peptides, adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP). Sequence comparison of homologous proadrenomedullin genes in vertebrate evolution shows a high degree of stability in the reading frame for AM, whereas PAMP sequence changes rapidly. Here we investigate the functional significance of PAMP phylogenetic variation studying two of PAMP's better characterized physiological activities, angiogenic potential and antimicrobial capability, with synthetic peptides carrying the predicted sequence for human, mouse, chicken, and fish PAMP. All tested peptides induced angiogenesis when compared with untreated controls, but chicken and fish PAMP, which lack terminal amidation, were apparently less angiogenic than their human and mouse homologs. Confirming the role of amidation in angiogenesis, Gly-extended and free acid variants of human PAMP produced responses similar to the natural nonamidated peptides. In contrast, antimicrobial activity was restricted to human PAMP, indicating that this function may have been acquired at a late time during the evolution of PAMP. Interestingly, free acid human PAMP retained antimicrobial activity whereas the Gly-extended form did not. This fact may reflect the need for maintaining a tightly defined structural conformation in the pore-forming mechanism proposed for these antimicrobial agents. The evolution of PAMP provides an example of an angiogenic peptide that developed antimicrobial capabilities without losing its original function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the hypothesis that activation of the protective arm of the renin angiotensin system, the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis, corrects the vasoreparative dysfunction typically seen in the CD34(+) cells isolated from diabetic individuals. Peripheral blood CD34(+) cells from patients with diabetes were compared with those of nondiabetic controls. Ang-(1-7) restored impaired migration and nitric oxide bioavailability/cGMP in response to stromal cell-derived factor and resulted in a decrease in NADPH oxidase activity. The survival and proliferation of CD34(+) cells from diabetic individuals were enhanced by Ang-(1-7) in a Mas/phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. ACE2 expression was lower, and ACE2 activators xanthenone and diminazine aceturate were less effective in inducing the migration in cells from patients with diabetes compared with controls. Ang-(1-7) overexpression by lentiviral gene modification restored both the in vitro vasoreparative functions of diabetic cells and the in vivo homing efficiency to areas of ischemia. A cohort of patients who remained free of microvascular complications despite having a history of longstanding inadequate glycemic control had higher expression of ACE2/Mas mRNA than patients with diabetes with microvascular complications matched for age, sex, and glycemic control. Thus, ACE2/Ang-(1-7)\Mas pathway activation corrects existing diabetes-induced CD34(+) cell dysfunction and also confers protection from development of this dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caveolae are plasma membrane structures formed from a complex of the proteins caveolin-1 and caveolin-2. Caveolae interact with pro-inflammatory cytokines and are dysregulated in fibrotic disease. Although caveolae are present infrequently in healthy kidneys, they are abundant during kidney injury. An association has been identified between a CAV1 gene variant and long term kidney transplant survival. Chronic, gradual decline in transplant function is a persistent problem in kidney transplantation. The aetiology of this is diverse but fibrosis within the transplanted organ is the common end point. This study is the first to investigate the association of CAV2 gene variants with kidney transplant outcomes. Genomic DNA from donors and recipients of 575 kidney transplants performed in Belfast was investigated for common variation in CAV2 using a tag SNP approach. The CAV2 SNP rs13221869 was nominally significant for kidney transplant failure. Validation was sought in an independent group of kidney transplant donors and recipients from Dublin, Ireland using a second genotyping technology. Due to the unexpected absence of rs13221869 from this cohort, the CAV2 gene was resequenced. One novel SNP and a novel insertion/deletion in CAV2 were identified; rs13221869 is located in a repetitive region and was not a true variant in resequenced populations. CAV2 is a plausible candidate gene for association with kidney transplant outcomes given its proximity to CAV1 and its role in attenuating fibrosis. This study does not support an association between CAV2 variation and kidney transplant survival. Further analysis of CAV2 should be undertaken with an awareness of the sequence complexities and genetic variants highlighted by this study. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two novel mutations were identified in a compound heterozygous male with lecithin:cholesterol acyltransferase (LCAT) deficiency. Exon sequence determination of the LCAT gene of the proband revealed two novel heterozygous mutations in exons one (C110T) and six (C991T) that predict non-conservative amino acid substitutions (Thr13Met and Pro307Ser, respectively). To assess the distinct functional impact of the separate mutant alleles, studies were conducted in the proband's 3-generation pedigree. The compound heterozygous proband had negligible HDL and severely reduced apolipoprotein A-I, LCAT mass, LCAT activity, and cholesterol esterification rate (CER). The proband's mother and two sisters were heterozygous for the Pro307Ser mutation and had low HDL, markedly reduced LCAT activity and CER, and the propensity for significant reductions in LCAT protein mass. The proband's father and two daughters were heterozygous for the Thr13Met mutation and also displayed low HDL, reduced LCAT activity and CER, and more modest decrements in LCAT mass. Mean LCAT specific activity was severely impaired in the compound heterozygous proband and was reduced by 50% in individuals heterozygous for either mutation, compared to wild type family members. It is also shown that the two mutations impair both catalytic activity and expression of the circulating protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small RNA-mediated chromatin silencing is well characterized for repeated sequences and transposons, but its role in regulating single-copy endogenous genes is unclear. We have identified two small RNAs (30 and 24 nucleotides) corresponding to the reverse strand 3' to the canonical poly(A) site of FLOWERING LOCUS C (FLC), an Arabidopsis gene encoding a repressor of flowering. Genome searches suggest that these RNAs originate from the FLC locus in a genomic region lacking repeats. The 24-nt small RNA, which is most abundant in developing fruits, is absent in mutants defective in RNA polymerase IVa, RNA-DEPENDENT RNA POLYMERASE 2, and DICER-LIKE 3, components required for RNAi-mediated chromatin silencing. The corresponding genomic region shows histone 3 lysine 9 dimethylation, which was reduced in a dcl2,3,4 triple mutant. Investigations into the origins of the small RNAs revealed a polymerase IVa-dependent spliced, antisense transcript covering the 3' FLC region. Mutation of this genomic region by T-DNA insertion led to FLC misexpression and delayed flowering, suggesting that RNAi-mediated chromatin modification is an important component of endogenous pathways that function to suppress FLC expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CCN2/CTGF is an established effector of TGFß driven responses in diabetic nephropathy. We have identified an interaction between CCN2 and TGFß leading to altered phenotypic differentiation and inhibited cellular migration. Here we determine the gene expression profile associated with this phenotype and define a transcriptional basis for differential actin related gene expression and cytoskeletal function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple lines of evidence suggest that schizophrenia results from aberrant neurodevelopment. The neurogenin1 gene (neurog1) consists of a single 1,666 bp exon that encodes a basic helix-loop-helix (bHLH) transcription factor that causes neuronal differentiation and induces cortical and glutamatergic differentiation programs. Because of its function and its location in 5q31.1, which has been linked to schizophrenia in multiple samples, we tested it for association with the disorder. We sequenced neurog1 in 25 affected subjects from the Irish Study of High-Density Schizophrenia Families. We observed a 5'-UTR SNP at position -60, already present in databases as rs8192558, and tested it along with rs2344485, rs8192559, and rs2344484. Narrow, intermediate, and broad diagnostic definitions were used. The major alleles of rs8192558 and rs2344484 were over-transmitted to affected subjects using both Pedigree Disequilibrium Test (PDT) (0.01 <or = P <or = 0.06) and FBAT (0.02 <or = P <or = 0.07). A haplotype consisting of the major alleles of all four SNPs was significantly over-transmitted in FBAT to the broad definition (P = 0.049), with trend significance to the narrow and intermediate definitions, and with trend significance in PDT. In confirmatory tests using 657 cases and 411 controls, this haplotype was slightly but not significantly over-represented in cases (81% vs. 77%, P = 0.21). These results, along with a priori evidence for the involvement of neurog1 in neurodevelopment, suggest that variants in neurog1 might have a small effect on susceptibility to schizophrenia. This gene should be tested in additional and larger samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10,337 cases and 11,174 controls (OR=1.10; p-value=3.79×10(-5)). Thus, it appears that rare and common variants in a single gene - FBN2 - can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.