874 resultados para effort allocation
Resumo:
This paper discusses the power allocation with fixed rate constraint problem in multi-carrier code division multiple access (MC-CDMA) networks, that has been solved through game theoretic perspective by the use of an iterative water-filling algorithm (IWFA). The problem is analyzed under various interference density configurations, and its reliability is studied in terms of solution existence and uniqueness. Moreover, numerical results reveal the approach shortcoming, thus a new method combining swarm intelligence and IWFA is proposed to make practicable the use of game theoretic approaches in realistic MC-CDMA systems scenarios. The contribution of this paper is twofold: (i) provide a complete analysis for the existence and uniqueness of the game solution, from simple to more realist and complex interference scenarios; (ii) propose a hybrid power allocation optimization method combining swarm intelligence, game theory and IWFA. To corroborate the effectiveness of the proposed method, an outage probability analysis in realistic interference scenarios, and a complexity comparison with the classical IWFA are presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.
Resumo:
Abstract Background Over the last years, a number of researchers have investigated how to improve the reuse of crosscutting concerns. New possibilities have emerged with the advent of aspect-oriented programming, and many frameworks were designed considering the abstractions provided by this new paradigm. We call this type of framework Crosscutting Frameworks (CF), as it usually encapsulates a generic and abstract design of one crosscutting concern. However, most of the proposed CFs employ white-box strategies in their reuse process, requiring two mainly technical skills: (i) knowing syntax details of the programming language employed to build the framework and (ii) being aware of the architectural details of the CF and its internal nomenclature. Also, another problem is that the reuse process can only be initiated as soon as the development process reaches the implementation phase, preventing it from starting earlier. Method In order to solve these problems, we present in this paper a model-based approach for reusing CFs which shields application engineers from technical details, letting him/her concentrate on what the framework really needs from the application under development. To support our approach, two models are proposed: the Reuse Requirements Model (RRM) and the Reuse Model (RM). The former must be used to describe the framework structure and the later is in charge of supporting the reuse process. As soon as the application engineer has filled in the RM, the reuse code can be automatically generated. Results We also present here the result of two comparative experiments using two versions of a Persistence CF: the original one, whose reuse process is based on writing code, and the new one, which is model-based. The first experiment evaluated the productivity during the reuse process, and the second one evaluated the effort of maintaining applications developed with both CF versions. The results show the improvement of 97% in the productivity; however little difference was perceived regarding the effort for maintaining the required application. Conclusion By using the approach herein presented, it was possible to conclude the following: (i) it is possible to automate the instantiation of CFs, and (ii) the productivity of developers are improved as long as they use a model-based instantiation approach.
Resumo:
Máster en Gestión Sostenible de Recursos Pesqueros
Resumo:
A prevalent claim is that we are in knowledge economy. When we talk about knowledge economy, we generally mean the concept of “Knowledge-based economy” indicating the use of knowledge and technologies to produce economic benefits. Hence knowledge is both tool and raw material (people’s skill) for producing some kind of product or service. In this kind of environment economic organization is undergoing several changes. For example authority relations are less important, legal and ownership-based definitions of the boundaries of the firm are becoming irrelevant and there are only few constraints on the set of coordination mechanisms. Hence what characterises a knowledge economy is the growing importance of human capital in productive processes (Foss, 2005) and the increasing knowledge intensity of jobs (Hodgson, 1999). Economic processes are also highly intertwined with social processes: they are likely to be informal and reciprocal rather than formal and negotiated. Another important point is also the problem of the division of labor: as economic activity becomes mainly intellectual and requires the integration of specific and idiosyncratic skills, the task of dividing the job and assigning it to the most appropriate individuals becomes arduous, a “supervisory problem” (Hogdson, 1999) emerges and traditional hierarchical control may result increasingly ineffective. Not only specificity of know how makes it awkward to monitor the execution of tasks, more importantly, top-down integration of skills may be difficult because ‘the nominal supervisors will not know the best way of doing the job – or even the precise purpose of the specialist job itself – and the worker will know better’ (Hogdson,1999). We, therefore, expect that the organization of the economic activity of specialists should be, at least partially, self-organized. The aim of this thesis is to bridge studies from computer science and in particular from Peer-to-Peer Networks (P2P) to organization theories. We think that the P2P paradigm well fits with organization problems related to all those situation in which a central authority is not possible. We believe that P2P Networks show a number of characteristics similar to firms working in a knowledge-based economy and hence that the methodology used for studying P2P Networks can be applied to organization studies. Three are the main characteristics we think P2P have in common with firms involved in knowledge economy: - Decentralization: in a pure P2P system every peer is an equal participant, there is no central authority governing the actions of the single peers; - Cost of ownership: P2P computing implies shared ownership reducing the cost of owing the systems and the content, and the cost of maintaining them; - Self-Organization: it refers to the process in a system leading to the emergence of global order within the system without the presence of another system dictating this order. These characteristics are present also in the kind of firm that we try to address and that’ why we have shifted the techniques we adopted for studies in computer science (Marcozzi et al., 2005; Hales et al., 2007 [39]) to management science.
Resumo:
This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.
Resumo:
A recent initiative of the European Space Agency (ESA) aims at the definition and adoption of a software reference architecture for use in on-board software of future space missions. Our PhD project placed in the context of that effort. At the outset of our work we gathered all the industrial needs relevant to ESA and all the main European space stakeholders and we were able to consolidate a set of technical high-level requirements for the fulfillment of them. The conclusion we reached from that phase confirmed that the adoption of a software reference architecture was indeed the best solution for the fulfillment of the high-level requirements. The software reference architecture we set on building rests on four constituents: (i) a component model, to design the software as a composition of individually verifiable and reusable software units; (ii) a computational model, to ensure that the architectural description of the software is statically analyzable; (iii) a programming model, to ensure that the implementation of the design entities conforms with the semantics, the assumptions and the constraints of the computational model; (iv) a conforming execution platform, to actively preserve at run time the properties asserted by static analysis. The nature, feasibility and fitness of constituents (ii), (iii) and (iv), were already proved by the author in an international project that preceded the commencement of the PhD work. The core of the PhD project was therefore centered on the design and prototype implementation of constituent (i), a component model. Our proposed component model is centered on: (i) rigorous separation of concerns, achieved with the support for design views and by careful allocation of concerns to the dedicated software entities; (ii) the support for specification and model-based analysis of extra-functional properties; (iii) the inclusion space-specific concerns.
Resumo:
Carbon fluxes and allocation pattern, and their relationship with the main environmental and physiological parameters, were studied in an apple orchard for one year (2010). I combined three widely used methods: eddy covariance, soil respiration and biometric measurements, and I applied a measurement protocol allowing a cross-check between C fluxes estimated using different methods. I attributed NPP components to standing biomass increment, detritus cycle and lateral export. The influence of environmental and physiological parameters on NEE, GPP and Reco was analyzed with a multiple regression model approach. I found that both NEP and GPP of the apple orchard were of similar magnitude to those of forests growing in similar climate conditions, while large differences occurred in the allocation pattern and in the fate of produced biomass. Apple production accounted for 49% of annual NPP, organic material (leaves, fine root litter, pruned wood and early fruit drop) contributing to detritus cycle was 46%, and only 5% went to standing biomass increment. The carbon use efficiency (CUE), with an annual average of 0.68 ± 0.10, was higher than the previously suggested constant values of 0.47-0.50. Light and leaf area index had the strongest influence on both NEE and GPP. On a diurnal basis, NEE and GPP reached their peak approximately at noon, while they appeared to be limited by high values of VPD and air temperature in the afternoon. The proposed models can be used to explain and simulate current relations between carbon fluxes and environmental parameters at daily and yearly time scale. On average, the annual NEP balanced the carbon annually exported with the harvested apples. These data support the hypothesis of a minimal or null impact of the apple orchard ecosystem on net C emission to the atmosphere.
Resumo:
Le scelte di asset allocation costituiscono un problema ricorrente per ogni investitore. Quest’ultimo è continuamente impegnato a combinare diverse asset class per giungere ad un investimento coerente con le proprie preferenze. L’esigenza di supportare gli asset manager nello svolgimento delle proprie mansioni ha alimentato nel tempo una vasta letteratura che ha proposto numerose strategie e modelli di portfolio construction. Questa tesi tenta di fornire una rassegna di alcuni modelli innovativi di previsione e di alcune strategie nell’ambito dell’asset allocation tattica, per poi valutarne i risvolti pratici. In primis verificheremo la sussistenza di eventuali relazioni tra la dinamica di alcune variabili macroeconomiche ed i mercati finanziari. Lo scopo è quello di individuare un modello econometrico capace di orientare le strategie dei gestori nella costruzione dei propri portafogli di investimento. L’analisi prende in considerazione il mercato americano, durante un periodo caratterizzato da rapide trasformazioni economiche e da un’elevata volatilità dei prezzi azionari. In secondo luogo verrà esaminata la validità delle strategie di trading momentum e contrarian nei mercati futures, in particolare quelli dell’Eurozona, che ben si prestano all’implementazione delle stesse, grazie all’assenza di vincoli sulle operazioni di shorting ed ai ridotti costi di transazione. Dall’indagine emerge che entrambe le anomalie si presentano con carattere di stabilità. I rendimenti anomali permangono anche qualora vengano utilizzati i tradizionali modelli di asset pricing, quali il CAPM, il modello di Fama e French e quello di Carhart. Infine, utilizzando l’approccio EGARCH-M, verranno formulate previsioni sulla volatilità dei rendimenti dei titoli appartenenti al Dow Jones. Quest’ultime saranno poi utilizzate come input per determinare le views da inserire nel modello di Black e Litterman. I risultati ottenuti, evidenziano, per diversi valori dello scalare tau, extra rendimenti medi del new combined vector superiori al vettore degli extra rendimenti di equilibrio di mercato, seppur con livelli più elevati di rischio.
Resumo:
This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.
Resumo:
Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.
Resumo:
La tesi affronta il problema di Finanza Matematica dell'asset allocation strategica che consiste nel processo di ripartizione ottimale delle risorse tra diverse attività finanziarie presenti su un mercato. Sulla base della teoria di Harry Markowitz, attraverso passaggi matematici rigorosi si costruisce un portafoglio che risponde a dei requisiti di efficienza in termini di rapporto rischio-rendimento. Vengono inoltre forniti esempi di applicazione elaborati attraverso il software Mathematica.
Resumo:
Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.
Resumo:
High Performance Computing e una tecnologia usata dai cluster computazionali per creare sistemi di elaborazione che sono in grado di fornire servizi molto piu potenti rispetto ai computer tradizionali. Di conseguenza la tecnologia HPC e diventata un fattore determinante nella competizione industriale e nella ricerca. I sistemi HPC continuano a crescere in termini di nodi e core. Le previsioni indicano che il numero dei nodi arrivera a un milione a breve. Questo tipo di architettura presenta anche dei costi molto alti in termini del consumo delle risorse, che diventano insostenibili per il mercato industriale. Un scheduler centralizzato non e in grado di gestire un numero di risorse cosi alto, mantenendo un tempo di risposta ragionevole. In questa tesi viene presentato un modello di scheduling distribuito che si basa sulla programmazione a vincoli e che modella il problema dello scheduling grazie a una serie di vincoli temporali e vincoli sulle risorse che devono essere soddisfatti. Lo scheduler cerca di ottimizzare le performance delle risorse e tende ad avvicinarsi a un profilo di consumo desiderato, considerato ottimale. Vengono analizzati vari modelli diversi e ognuno di questi viene testato in vari ambienti.