998 resultados para delta 18O
Resumo:
Historically, the Holocene has been considered an interval of relatively stable climate. However, recent studies from the northern Arabian Sea (Netherlands Indian Ocean Program 905) suggested high-amplitude climate shifts in the early and middle Holocene based on faunal and benthic isotopic proxy records. We examined benthic foraminiferal faunal and stable isotopic data from Ocean Drilling Program (ODP) Site 723 and total organic carbon data from ODP Site 724, Oman Margin (808 and 593 m water depths, respectively). At Site 723 the mid-Holocene shift in d18O values of infaunal benthic species Uvigerina peregrina (1.4 per mil) is 3 times larger than that of epifaunal benthic species Cibicides kullenbergi recorded at Site NIOP 905 off Somalia. However, none of the five other benthic species we measured at Hole 723A exhibits such a shift in d18O. We speculate that the late Holocene d18O decrease in U. peregrina represents species-specific changes in ecological habitat or food preference in response to changes in surface and deep ocean circulation. While the stable isotopic data do not appear to indicate a middle Holocene climatic shift, our total organic carbon and benthic faunal assemblage data do indicate that the early Holocene deep Arabian Sea was influenced by increased ventilation perhaps by North Atlantic Deep Water and/or Circumpolar Deep Water incursions into the Indian Ocean, leading to remineralization of organic matter and a relatively weak early Holocene oxygen minimum zone in the northwest Arabian Sea in spite of strong summer monsoon circulation.
Resumo:
Total carbon and carbonate contents, quantitative carbonate mineralogy, trace metal concentrations, and stable isotope compositions were determined on a suite of samples from the Miocene sections at Sites 1006 and 1007. The Miocene section at Site 1007, located at the toe-of-slope, contains a relatively high proportion of bank-derived components and becomes fully lithified at a depth of ~300 meters below seafloor (mbsf). By contrast, Miocene sediments at Site 1006, situated in Neogene drift deposits in the Straits of Florida and composed primarily of pelagic carbonates, do not become fully lithified until a depth of ~675 mbsf. Diagenetic and compositional contrasts between Sites 1006 and 1007 are reflected in geochemical data derived from sediment samples from each site.
Resumo:
The mineralogy and chemistry of altered basalts and the stable isotopic compositions of secondary vein carbonates were studied in cores from Ocean Drilling Program Hole 843B, located in 95-Ma crust of the Hawaiian Arch. Millimeter- to centimeter-sized dark alteration halos around veins are 5%-15% altered to celadonite and Fe-oxyhydroxides, plus minor saponite and calcite. Adjacent gray host rocks are about 15% altered to saponite and calcite. The dark halos are enriched in H2O+, CO2, FeT, K2O, MnO, and Fe3+/FeT and depleted in SiO2, Al2O3, MgO, and TiO2 relative to gray host rocks. Brown alteration halos occur around veins where veins are more abundant, and are similar to dark halos, but contain more Fe-oxyhydroxides and exhibit greater Fe2O3T contents and higher Fe3+/FeT. Stable isotopic compositions of vein carbonates are consistent with their precipitation from seawater at temperatures of 5°-40°C. Crosscutting relationships of veins and zoned vein and vesicle fillings reveal a sequence of secondary mineral formation and alteration conditions. Celadonite and Fe-oxyhydroxides formed and dark alteration halos developed relatively early, under oxidizing conditions at low temperatures (<50°C). Saponite formed later at lower seawater/rock ratios and under more reducing conditions. Calcite and pyrite formed last in veins and vesicles from more evolved, seawaterderived fluids at temperatures of 5°-40°C. A second stage of celadonite, with compositions distinct from the early celadonite, also occurred relatively late (within the "calcite stage"), and may be related to refracturing of the crust and introduction of less-evolved seawater solutions into the rocks. Trends to higher K2O contents are attributed to alteration, but high K/Ti, Ba, and Zr contents indicate the presence of enriched or transitional MORB. CO2 contents of Pacific ODP cores exhibit a general increase with age suggesting progressive fixation of CO2 as calcite in the crust, but this could be complicated by local heterogeneities in fracturing and calcite formation in the crust.
Resumo:
This paper presents a compilation of stable-isotope and percentage-of-carbonate data for the Upper Cretaceous/ lower Tertiary hemipelagic sediments from DSDP Leg 73, Site 524.
Resumo:
Thirty-five samples from the drill core of the three Leg 163 sites (Sites 988, 989, and 990) off the southeast coast of Greenland were analyzed for 27 major, minor, and trace elements by X-ray fluorescence (XRF) and for 25 trace elements, including 14 rare-earth elements (REEs), by an inductively coupled plasma source mass spectrometer (ICP/MS). Sr- and Nd-isotope data are reported for seven samples and oxygen-isotope data are reported for 19 plagioclase separates. In addition, a reconnaissance survey of the composition of the main mineral phases, plagioclase, pyroxene, and oxides was determined on an electron microprobe to provide the basic information required for petrogenetic modeling. Olivine pseudomorphs are present in many of the samples, but in no case was an olivine grain found that was fresh enough to give a reliable analysis. The chemical and isotopic data recorded here were determined to provide a comparison with the larger data sets acquired by the Edinburgh, Copenhagen, and Leicester laboratories from both Legs 152 and 163 drill cores. This will permit a detailed comparison of the North Atlantic flood basalt province as a whole with the better known Columbia River, Deccan, and Karoo continental flood basalt provinces, for which substantial chemical data sets are already available at Washington State University.
Resumo:
CH4 and CO2 species in pore fluids from slope sediments off Guatemala show extreme 13C-enrichment (d13C of -41 and +38 per mil, respectively) compared with the typical degree of 13C-enrichment in pore fluids of DSDP sediments (d13C of - 60 and + 10 per mil). These unusual isotopic compositions are believed to result from microbial decomposition of organic matter, and possibly from additional isotopic fractionation associated with the formation of gas hydrates. In addition to the isotopic fractionation displayed by CH4 and CO2, the pore water exhibits a systematic increase in d18O with decrease in chlorinity. As against seawater d18O values of 0 and chlorinity of 19 per mil, the water collected from decomposed gas hydrate from Hole 570 had a d18O of + 3.0 per mil and chlorinity of 9.5 per mil. The isotopic compositions of pore-fluid constituents change gradually with depth in Hole 568 and discontinuously with depth in Hole 570.
Resumo:
We present a new mid-latitude speleothem record of millennial-scale climatic variability during OIS3 from the Villars Cave that, combined with former published contemporaneous samples from the same cave, gives a coherent image of the climate variability in SW-France between ~55 ka and ~30 ka. The 0.82 m long stalagmite Vil-stm27 was dated with 26 TIMS U-Th analyses and its growth curve displays variations that are linked with the stable isotopes, both controlled by the climatic conditions. It consists in a higher resolved replicate of the previously published Vil-stm9 and Vil-stm14 stalagmites where Dansgaard-Oeschger (DO) events have been observed. The good consistency between these three stalagmites and the comparison with other palaoeclimatic reconstructions, especially high resolution pollen records (ODP 976 from the Alboran Sea, Monticchio Lake record from southern Italy) and the nearby MD04-2845 Atlantic Ocean record, permits to draw a specific climatic pattern in SW-France during the OIS3 and to see regional differences between these sites. Main features of this period are: 1) warm events corresponding to Greenland Interstadials (GIS) that are characterized by low speleothem d13C, high temperate pollen percentages, warm temperatures and high humidity; among these events, GIS#12 is the most pronounced one at Villars characterized by an abrupt onset at ~46.6 ka and a duration of about 2.5 ka. The other well individualized warm event coincides with GIS#8 which is however much less pronounced and occurred during a cooler period as shown by a lower growth rate and a higher d13C; 2) cold events corresponding to Greenland Stadials (GS) that are clearly characterized by high speleothem d13C, low temperate pollen abundance, low temperature and enhanced dryness, particularly well expressed during GS coinciding with Heinrich events H5 and H4. The main feature of the Villars record is a general cooling trend between the DO#12 event ~45.5 ka and the synchronous stop of the three stalagmites at ~30 ka ±1, with a first well marked climatic threshold at ~41 ka after which the growth rate and the diameter of all stalagmites slows down significantly. This climatic evolution differs from that shown at southern Mediterranean sites where this trend is not observed. The ~30 ka age marks the second climatic threshold after which low temperatures and low rainfalls prevent speleothem growth in the Villars area until the Lateglacial warming that occurred at ~16.5 ± 0.5 ka. This 15 ka long hiatus, as the older Villars growth hiatus that occurred between 67.4 and 61 ka, are linked to low sea levels, reduced ocean circulation and a southward shift of the Polar Front that likely provoked local permafrost formation. These cold periods coincide with both low summer 65°N insolation, low atmospheric CO2 concentration and large ice sheets development (especially the Fennoscandian).
Resumo:
Leg 119 of the Ocean Drilling Program (ODP) provided the first opportunity to study the interstitial-water chemistry of the eastern Antarctic continental margin. Five sites were cored in a northwest-southeast transect of Prydz Bay that extended from the top of the continental slope to within 30 km of the coastline. Geological studies of the cores reveal a continental margin that has evolved through terrestrial, glacial, and glacial-marine environments. Chemical and stable isotopic analyses of the interstitial-waters were performed to determine the types of depositional environments and the diagenetic and hydrologic processes that are operating in this unusual marine environment. Highly compacted glacial sediments provide an effective barrier to the vertical diffusion of interstitial-water solutes. Meteoric water from the Antarctic continent appears to be flowing into Prydz Bay sediments through the sequence of terrestrial sediments that lie underneath the glacial sediments. The large amounts of erosion associated with glacial advances appear to have had the effect of limiting the amount of marine organic matter that is incorporated into the sediments on the continental shelf. Although all of the sites cored in Prydz Bay exhibit depletions in dissolved sulfate with increasing depth, the greatest bacterial activity is associated with a thin layer of diatom ooze that coats the seafloor of the inner bay. Results of alkalinity modeling, thermodynamic calculations, and strontium analyses indicate that (1) ocean bottom waters seaward of Site 740 are undersaturated with respect to both calcite and aragonite, (2) interstitial waters at each site become saturated or supersaturated with respect to calcite and aragonite with increasing depth, (3) precipitation of calcium carbonate reduces the alkalinity of the pore waters with increasing depth, and (4) recrystallization of aragonite to calcite accounts for 24% of the pore-water strontium. Weathering of unstable terrestrial debris and cation exchange between clay minerals and pore fluids are the most probable chemical processes affecting interstitial water cation gradients.
Resumo:
Strontium- and oxygen-isotopic measurements of samples recovered from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound during Leg 158 of the Ocean Drilling Program provide important constraints on the nature of fluid-rock interactions during basalt alteration and mineralization within an active hydrothermal deposit. Fresh Mid-Ocean Ridge Basalt (MORB), with a 87Sr/86Sr of 0.7026, from the basement beneath the TAG mound was altered at both low and high temperatures by seawater and altered at high temperature by near end-member black smoker fluids. Pillow breccias occurring beneath the margins of the mound are locally recrystallized to chlorite by interaction with large volumes of conductively heated seawater (>200°C). The development of a silicified, sulfide-mineralized stockwork within the basaltic basement follows a simple paragenetic sequence of chloritization followed by mineralization and the development of a quartz+pyrite+paragonite stockwork cut by quartz-pyrite veins. Initial alteration involved the development of chloritic alteration halos around basalt clasts by reaction with a Mg-bearing mixture of upwelling, high-temperature (>300°C), black smoker-type fluid with a minor (<10%) proportion of seawater. Continued high-temperature (>300°C) interaction between the wallrock and these Mg-bearing fluids results in the complete recrystallization of the wallrock to chlorite+quartz+pyrite. The quartz+pyrite+paragonite assemblage replaces the chloritized basalts, and developed by reaction at 250-360°C with end-member hydrothermal fluids having 87Sr/86Sr ~0.7038, similar to present-day vent fluids. The uniformity of the 87Sr/86Sr ratios of hydrothermal assemblages throughout the mound and stockwork requires that the 87Sr/86Sr ratio of end-member hydrothermal fluids has remained relatively constant for a time period longer than that required to change the interior thermal structure and plumbing network of the mound and underlying stockwork. Precipitation of anhydrite in breccias and as late-stage veins throughout most of the mound and stockwork, down to at least 125 mbsf, records extensive entrainment of seawater into the hydrothermal deposit. 87Sr/86Sr ratios indicate that most of the anhydrite formed from ~2:1 mixture of seawater and black smoker fluids (65%±15% seawater). Oxygen-isotopic compositions imply that anhydrite precipitated at temperatures between 147°C and 270°C and require that seawater was conductively heated to between 100°C and 180°C before mixing and precipitation occurred. Anhydrite from the TAG mound has a Sr-Ca partition coefficient Kd ~0.60±0.28 (2 sigma). This value is in agreement with the range of experimentally determined partition coefficients (Kd ~0.27-0.73) and is similar to those calculated for anhydrite from active black smoker chimneys from 21°N on the East Pacific Rise. The d18O (for SO4) of TAG anhydrite brackets the value of seawater sulfate oxygen (~9.5?). Dissolution of anhydrite back into the oceans during episodes of hydrothermal quiescence provides a mechanism of buffering seawater sulfate oxygen to an isotopically light composition, in addition to the precipitation and dissolution of anhydrite within the oceanic basement during hydrothermal recharge at the mid-ocean ridges.
Relative abundance and isotopic composition of calcite, dolomite and siderite from ODP Leg 164 sites
Resumo:
Authigenic carbonate mineral distributions are compared to pore-water geochemical profiles and used to evaluate diagenesis within sedimentary sections containing gas hydrates on the Blake Ridge (Ocean Drilling Program Sites 994, 995, and 997). Carbonate mineral distributions reveal three distinct diagenetic zones. (1) Carbonate minerals in the upper 20 m are primarily biogenic and show no evidence of diagenesis. The d13C and d18O values of calcite within this zone reflects marine carbonate (~0 per mil Peedee belemnite [PDB]) formed in equilibrium with seawater. (2) Between 20 and 100 mbsf, calcite d13C values are distinctly negative (as low as -7.0 per mil), and authigenic dolomite is common (~2-40 wt%) with d13C values between -3.6 per mil and 13.7 per mil. (3) Below 100 mbsf, dolomite abundance decreases to trace amounts, and disseminated siderite becomes the pervasive (~2-30 wt%) authigenic carbonate. Both siderite textures and stable isotope values indicate direct precipitation from pore fluids rather than dolomite replacement. The d13C and d18O values of siderite vary from 5.0 per mil to 10.9 per mil and 2.9 per mil to 7.6 per mil, respectively. Comparisons between the d13C profiles of dissolved inorganic carbon (DIC) and pore-water concentration gradients, with the d13C and d18O values of authigenic carbonates, delineate a distinct depth zonation for authigenic carbonate mineral formation. Coincidence of the most negative d13CDIC values (<=-38 per mil) and negative d13C values of both calcite and dolomite, with pore-water alkalinity increases, sulfate depletion, and decreases in interstitial Ca2+ and Mg2+ concentrations at and below 20 mbsf, suggests that authigenic calcite and dolomite formation is initiated at the base of the sulfate reduction zone (~21 mbsf) and occurs down to ~100 mbsf. Siderite formation apparently occurs between 120 and 450 mbsf; within, and above, the gas hydrate-bearing section of the sediment column (~200-450 mbsf). Siderite d13C and d18O values are nearly uniform from their shallowest occurrence to the bottom of the sedimentary section. However, present-day pore-water d13CDIC values are only similar to siderite d13C values between ~100 and 450 mbsf. Furthermore, calculated equilibrium d18O values of siderite match the measured 18O values of siderite between 120 and 450 mbsf. This interval is characterized by high alkalinity (40-120 mM) and low Ca2+ and Mg2+ concentrations, conditions that are consistent with siderite formation.
Resumo:
Ocean Drilling Program Site 704 in the subantarctic South Atlantic was drilled to investigate the response of the Southern Ocean to climatic and Oceanographic developments during the late Neogene. Stable oxygen and carbon isotopes of fine-fraction (<63 µm) carbonate were analyzed to supplement similar analyses of benthic and planktonic foraminifers. The fine fraction is generally composed primarily of coccoliths, and isotopic analyses of the fine fraction were made to complement the foraminiferal analyses. The isotopic curves thus generated suggest paleoceanographic changes not recognizable by the use of benthic and planktonic foraminifers alone. The global Chron 6 carbon isotope shift, found at 253-244 mbsf (6.39-6.0 Ma) at Site 704 in the planktonic and benthic record, is seen in the fine-fraction d13C record as a gradual decrease from 255 mbsf (6.44 Ma) to 210 mbsf (4.24 Ma). At 170 mbsf, mean d18O values of Neogloboquadrina pachyderma increase by 0.6 per mil-0.7 per mil (Hodell and Ciesielski, 1991, doi:10.2973/odp.proc.sr.114.150.1991), reflecting decreased temperature and increased continental ice volume. Accumulation rates increase by 3.3 times above this depth (which corresponds to an age of 2.5 Ma), suggesting increased upwelling and biologic productivity. Carbon isotopic values of fine-fraction carbonate decrease by about 1.5 per mil at 2.6 Ma; however, no change is recorded in the d13C of N. pachyderma. The fine-fraction d13C shift slightly precedes an average l per mil decrease in d13C in benthic foraminifers. The cause of the benthic d13C shift (most likely due to a change in deep water circulation; Hodell and Ciesielski, 1991) is probably not directly related to the fine-fraction shift. The fine-fraction shift is most likely caused by (1) a change in the upwelling to productivity ratio at this site, with increased upwelling bringing lighter carbon to surface waters, more productivity, and higher sedimentation rates and (2) a change in the particle composition of the fine fraction. The increased upwelling is probably due to a northward migration of the Antarctic Polar Front to a position nearer Site 704.
Resumo:
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated d34S_sulfide (3.7 to 12.7?). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high d34S_sulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (~400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ~300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5?) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 mln ton seawater S per year. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.