997 resultados para co-divergence
Resumo:
The reaction between Fe foil and a disc of ilmenite solid solution (Co-0.48 Ni-0.52) TiO3 was studied at 1273 K. At the metal/oxide interface, the displacement reaction, Fe + (Co,Mg)TiO3 = Co + (Fe,Mg)TiO3 occurs, resulting in an ilmenite solid solution containing three divalent cations. Ferrous ions diffuse into the oxide solid solution and cause the precipitation of Co-Fe alloy as discrete particles inside the oxide matrix. The morphology of the product layer was characterized by SEM. Only two phases, alloy and ilmenite, were detected in the reaction zone. This suggests that the local flux condition imposed by ilmenite stoichiometry (Co + Fe + Mg):Ti = 1:1] was satisfied during the reactive diffusion: (J(Co) + J(Fe) + J(Mg)) = J(Ti). The composition of the alloy and the oxide was determined using EPMA as a function of distance in the direction of diffusion. Although Mg does not participate in the displacement reaction, its composition in the ilmenite phase was found to be position dependent inside the reaction zone. The up-hill diffusion of inert Mg is caused by the development of chemical potential gradients as a result of displacement reaction. The evolution of composition gradients inside the reaction zone and the diffusion path in a ternary composition diagram of the system CoTiO3-FeTiO3-MgTiO3 are discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Co-crystals of 4,4'-bipyridine and 4-hydroxybenzoic acid (1 : 2) show synthon polymorphism with the former being more stable. A 2 : 1 co-crystal is pseudopolymorphic within the same structural landscape with the structural roles of the two bipyridine N-atoms being distinct, as evidenced by mimicry by 4-phenylpyridine.
Resumo:
The temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) of thiophene over a series of Co-Mo/gamma-Al2O3, hydrodesulfurization (HDS) catalysts with varying Co to Mo ratios have been studied with the objective of understanding the promotional role of Co in the HDS reaction. As part of the study, the desorptions (TPD) and hydrogenations (TPSR) of butane, butene, and butadiene over these catalysts have also been investigated. The TPD of the hydrocarbons over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site, with higher heats of desorption, without significantly affecting desorption from the original site. The TPSR measurements showed that the two sites had separate and independent activity for the hydrogenation of the C-4 hydrocarbons. The TPD of thiophene over catalysts with varying Co to Mo ratios showed a single desorption profile with identical heats of desorption, implying that Co does not affect or influence the adsorption sites for thiophene. The TPSR of the HDS of thiophene, however, showed that, although the products of the HDS reaction-butane, butene, and H2S-are the same irrespective of the Co content, the temperature profiles and the activation barriers for the formation of these species show considerable change with the Co/Co+Mo ratio. The results are discussed in light of the existing models for the promotional role of Co in the HDS reaction.
Resumo:
Interaction of CO with Cu clusters deposited on a ZnO(0001) crystal and on ZnO/Zn surfaces (prepared in the electron spectrometer) has been examined by UV and X-ray photoelectron spectroscopy. The interaction is stronger with the small Cu clusters deposited on ZnO/Zn surfaces. Interaction of CO is evert stronger with annealed Cu/ZnO/Zn surfaces where Cu-Zn alloy particles are present. Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
In this letter, we propose a method for blind separation of d co-channel BPSK signals arriving at an antenna array. Our method involves two steps. In the first step, the received data vectors at the output of the array is grouped into 2d clusters. In the second step, we assign the 2d d-tuples with ±1 elements to these clusters in a consistent fashion. From the knowledge of the cluster to which a data vector belongs, we estimate the bits transmitted at that instant. Computer simulations are used to study the performance of our method
Resumo:
Oxygen reactivity and catalytic activity of the cobalt-containing layered defect perovskites, YBa2Cu2CoO7+delta and LaBa2Cu2CoO7+delta, in comparison with LaBa2Cu3O7-delta have been investigated employing temperature-programmed desorption (TPD) and temperature-programmed surface reactions (TPSR) in the stoichiometric and catalytic mode using carbon monoxide as a probe molecule. TPD studies showed evidence for the presence of two distinct labile oxygen species, one at (0 0 1/2) sites and the other at (0 1/2 0) sites in LaBa2Cu2CoO7+delta against a single labile species at (0 1/2 0) in the case of two other oxides. The activation energies for the catalytic oxidation of carbon monoxide by oxygen over LaBa2Cu3O7-delta, YBa2Cu2CoO7+delta, and LaBa2Cu2CoO7+delta have been estimated to be 24.2, 15.9, and 13.6 kcal/mol, respectively. The reactivity and catalytic activity of the oxide systems have been interpreted in terms of the structural changes brought about by substituents, guided by a directing effect of the larger rare earth cation. TPSR profiles, structural analysis, and infrared spectroscopic investigations suggest that the oxygen present at (0 0 1/2) sites in the case of LaBa2Cu2CoO7+delta is accessible to catalytic oxidation of CO through a Mars-Van Krevelen pathway. Catalytic conversion of CO to CO2 over LaBa2Cu2CoO7+delta occurs at 200 degrees C. The enhanced reactivity is explained in terms of changes brought about in the coordination polyhedra around transition metals, enhanced basal plane oxygen diffusivity, and redox potentials of the different transition metal cations.
Resumo:
The reactions of the mononuclear cyclodiphosphazane complexes, cis-[Mo(CO)(4){cis-[PhNP(OR)](2)}(2)] with [Mo(CO)(4)(nbd)] (nbd = norbornadiene). [Mo(CO)(4)(NHC5H10)(2)] or [MCl(2)(cod)] (cod = cycloocta-1,5-diene) afforded the homobimetallic complexes; [Mo-2(CO)(8){mu-cis-[PhNP(OR)](2)}(2)] (R = C(5)H(4)Me-p 5 or CH2CF3 6) or the heterobimetallic complexes. [Mo-2(CO)(8){mu-cis-[PhNP(OE)](2)}(2)MCl(2)] (R = C(6)H(4)Me-p; M = Pd 7 or Pt 8). In all the above complexes, the two metal moieties are bridged by two cyclodiphosphazane ligands. The reactions of the mononuclear complexes, cis-[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}] with (M'Cl-2(cod)] afforded the trinuclear complexes, cis-[M'Cl-2[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}](2)] (M' = Pd, M = Mo, A = P(OMe)(3) 10; M' = Pt, M = Mo. A = P(OMe)(3) 11; M' = Pd. M = W. A = NHC5H10 12; M' = Pt, M = W. A = NHC5H10 13). The structure of the complex 5 has been determined by single-crystal X-ray crystallography.
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
Antiferroelectric lead zirconate thin films were formed on platinum coated silicon substrates by a reactive magnetron co-sputtering method. The films showed (240) preferred orientation. The crystallization temperatures and the preferred orientation were affected by the lead content in the films. The electric field forced transformation from the antiferroelectric phase to the ferroelectric phase was observed at room temperature with a maximum polarization value of 36 mu C/cm(2). The average field to excite the ferroelectric state and that for the reversion to the antiferroelectric state were 267 and 104 kV/cm respectively. (C) 1995 American Institute of Physics.
Resumo:
We report the synthesis of ternary transition metal nitrides of the formula MWN(2) for M=Mn, Co, Ni by reaction of the corresponding MWO(4) with NH3 gas at 600-700 degrees C. MnWN2 is isostructural with the already-known FeWN2, crystallizing in a hexagonal structure (a=2.901(2), b=16.48(5) Angstrom) related to LiMoN2. CoWN2 and NiWN2 (which are isostructural amongst themselves) adopt a different hexagonal structure with a smaller c parameter. While the Mn and Fe nitrides are semiconducting, the Co and Ni nitrides are semimetallic.
Resumo:
The electronic structures of pyrite-type transition-metal chalcogenides MS2-xSex (M = Fe, Co, Ni) has been investigated by photoemission and inverse-photoemission spectroscopy. The valence-band spectrum of ferromagnetic CoS2 does not show exchange splitting of the Co 3d peak, in disagreement with band-structure calculations. High-resolution photoemission spectra of NiS1.55Se0.45 shows spectral weight transfer from low (similar or equal to 50 meV) to high (0.2-0.5 eV) binding energies, in going from the metallic to the insulating phase.
Resumo:
An extensive search of the structural landscape of orcinol, 5-methyl-1,3-dihydroxybenzene, has been carried out with high throughput techniques. Polymorphs, pseudopolymorphs (solvates), and co-crystals are described. Several packing modes driven by O-H center dot center dot center dot N hydrogen bonds were identified for the orcinol N-base co-crystals and their hydrates. In these several structural variations, the OH group conformations in the orcinol molecule were found to depend on the choice of co-formers and the crystallization conditions employed. The structural landscape of a molecule is properly described by a sufficiently large number of related crystal structures, and high throughput crystallization followed by rapid structure determinations enables one to access these structures efficiently. Any understanding of this landscape would enable the crystal engineer to reasonably anticipate crystal structures of benzene-1,3-diol co-crystals with N-bases.
Resumo:
A hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) containing Co(II), Ni(II) and Cu(II) ions was prepared by curing N-MPGE and tetradentate Schiff base Co(II), Ni(II) and Cu(II) complexes. The curing polymerization reaction of N-MPGE with metal complexes as curing agents was studied. The cured samples were studied for thermal stability, chemical (acid/alkali/solvent) and water absorption resistance and homogeneity of the cured systems. The tetradentate Schiff base, 3-(Z)-2-piperazin-1-yl-ethylimino]-1,3-dihydro indol-2-one was synthesized by the condensation of Isatin (Indole-2, 3-dione) with 1-(2-aminoethyl)piperazine (AEP). Its complexes with Co(II), Ni(II) and Cu(II) have been synthesized and characterized by microanalysis, conductivity, Uv-Visible, FT-IR, TGA and magnetic susceptibility measurements. The spectral data revealed that the ligand acts as a neutral tetradentate Schiff base and coordinating through the azomethine nitrogen, two piperazine nitrogen atoms and carbonyl oxygen.
Resumo:
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(11), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type (M2LX2]center dot nH(2)O and Ni(2)LX(2)2H(2)O]center dot nH(2)O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(11) and Cu(11) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method. (C) 2011 Elsevier Ltd. All rights reserved.