973 resultados para chemical vapor deposition (CVD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass substrates was achieved by the reaction of TiCl4 and a co-oxygen source (MeOH, EtOH, (PrOH)-Pr-i or H2O) at 500-650degreesC. The coatings show excellent uniformity, surface coverage and adherence. Growth rates were of the order of 0.3 mum min(-1) at 500degreesC. All films are crystalline and single phase with XRD showing the anatase TiO2 diffraction pattern; a = 3.78(1), c = 9.51(1) Angstrom. Optically, the films show minimal reflectivity from 300-1600 nm and 50-80% total transmission from 300-800 nm. Contact angles are in the range 20-40degrees for as-prepared films and 1-10degrees after 30 min irradiation at 254 nm. All of the films show significant photocatalyic activity as regards the destruction of an overlayer of stearic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron-doped titanium dioxide (B-TiO) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm. Hydrogen production rates of B-TiO at 24 μL cm h far exceeded undoped TiO at 2.6 μL cm h. The B-TiO samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent. © 2013 The Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have formed and characterized polycrystalline diamond films with surfaces having hydrogen terminations, oxygen terminations, or fluorine terminations, using a small, simple and novel plasma gun to bombard the diamond surface, formed by plasma assisted CVD in a prior step, with ions of the wanted terminating species. The potential differences between surface regions with different terminations were measured by Kelvin Force Microscopy (KFM). The highest potential occurred for oxygen termination regions and the lowest for fluorine. The potential difference between regions with oxygen terminations and hydrogen terminations was about 80 mV, and between regions with hydrogen terminations and fluorine terminations about 150 mV. Regions with different terminations were identified and imaged using the secondary electron signal provided by scanning electron microscopy (SEM). since this signal presents contrast for surfaces with different electrical properties. The wettability of the surfaces with different terminations was evaluated, measuring contact angles. The sample with oxygen termination was the most hydrophilic, with a contact angle of 75 degrees. hydrogen-terminated regions with 83 degrees, and fluorine regions 93 degrees, the most hydrophobic sample. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ca(Zr0.05Ti0.95)O-3 (CZT) thin films were grown on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by the soft chemical method. The films were deposited from spin-coating technique and annealed at 928 K for 4 h under oxygen atmosphere. CZT films present orthorhombic structure with a crack free and granular microstructure. Atomic force microscopy and field-emission scanning electron microscopy showed that CZT present grains with about 47 nm and thickness about 450 nm. Dielectric constant and dielectric loss of the films was approximately 210 at 100 kHz and 0.032 at 1 MHz. The Au/CZT/Pt capacitor shows a hysteresis loop with remnant polarization of 2.5 mu C/cm(2), and coercive field of 18 kV/cm, at an applied voltage of 6 V. The leakage current density was about 4.6 x 10(-8) A/cm(2) at 3 V. Dielectric constant-voltage curve is located at zero bias field suggesting the absence of internal electric fields. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of tungsten (W6+) ion substituting on dielectric and ferroelectric behavior in SrBi2(Ta0.5Nb0.5)(2)O-9 (SBTN) thin films prepared by polymeric precursor method was investigated at room temperature. The addition of W6+ ion in the SBTN lattice was evaluated by X-ray diffraction (XRD), microstructural and dielectrical properties. An increase in the grain size is evident when tungsten is introduced in the SBTN lattice. Substitution of tungsten until 10% on B site leads to introduce space charge polarization into the system, resulting in an appreciable decrease in both dielectric constant and tangent loss. The morphology of the thin films investigated by atomic force microscopy leads to an increase in the grain size after tungsten addition. Fatigue resistance was noted with increase in tungsten addition. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense photoluminescence in highly disordered strontium titanate amorphous thin films prepared by the polymeric precursor method was observed at room temperature (300 K). The luminescence spectra of SrTiO3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region. X-ray absorption near edge structure was used to probe the local atomic structure of SrTiO3 amorphous and crystalline thin films. Photoluminescence intensity in the 535 nm range was found to be correlated with the presence of non-bridging oxygen defects. A discussion is presented of the nature of this photoluminescence, which may be related to the disordered structure in SrTiO3 amorphous thin films. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrically conductive LaNiO3-delta (LNO) thin films with typical thickness of 200 nm were deposited on Si (111) substrates by a chemical solution deposition method and heat-treated in air at 700 degreesC. Structural, morphological, and electrical properties of the LNO thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field-emission scanning electron microscopy (FEG-SEM), and electrical resistivity rho(T). The thin films have a very flat surface and no droplet was found on their surfaces. The average grain size observed by AFM and FEG-SEM was approximately 100 nm in excellent agreement with XRD data. The rho(T) data showed that these thin films display a good metallic character in a large range of temperature. These results suggest the use of this conductive layer as electrode in the integration of microelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BiFeO3 (BFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si substrates by using a polymeric precursor solution under appropriate crystallization conditions. The capacitance dependence on voltage is strongly nonlinear, confirming the ferroelectric properties of the films resulting from the domain switching. The leakage current density increases with annealing temperature. The polarization electric field curves could be obtained in BFO films annealed at 500 degrees C, free of secondary phases. X-ray photoelectron spectroscopy spectra of films annealed at 500 degrees C indicated that the oxidation state of Fe was purely 3+, demonstrating that our films possess stable chemical configurations. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (Vs) and of the proportion of TEOS in the mixture (XT) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on Vs and XT are presented. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the properties of BaBi2Ta2O9 (BBT) thin films for dynamic random-access memory (DRAM) and integrated capacitor applications. Crystalline BBT thin films were successfully fabricated by the chemical solution deposition technique on Pt-coated Si substrates at a low annealing temperature of 650°C. The films were characterized in terms of structural, dielectric, and insulating properties. The electrical measurements were conducted on Pt/BBT/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor, at 100 kHz, were 282 and 0.023, respectively, for films annealed at 700°C for 60 min. The leakage current density of the films was lower than 10-9 A/cm2 at an applied electric field of 300 kV/cm. A large storage density of 38.4 fC/μm2 was obtained at an applied electric field of 200 kV/cm. The high dielectric constant, low dielectric loss and low leakage current density suggest the suitability of BBT thin films as dielectric layer for DRAM and integrated capacitor applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ag-containing polyethyleneoxide (FEO)-like thin films have been deposited in Radio Frequency Glow Discharges fed with vapors of diethyleneglycol-dimethyl-ether and argon. Proper experimental conditions have been utilized in order to fragment the monomer in the glow and, at the same time, sputter Ag from the silver RF cathode of the reactor, in a way that polyethyleneoxide(PEO)-like coatings with embedded Ag clusters have been deposited at the ground electrode. The composition of the coatings has been investigated by means of different techniques; the plasma process has been investigated by means of Actinometric Optical Emission Spectroscopy. A correlation has been found between the amount of silver embedded in the coatings and that sputtered in the discharge, monitored by actinometry, that could eventually be utilized to control in situ the deposition process.