948 resultados para bug life-cycle management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente trabajo se basa en la filosofía de la Construcción sin Pérdidas (“Lean Construction”), analizando la situación de esta filosofía en el sector de la edificación en el contexto internacional y español, respondiendo las siguientes preguntas: 1. ¿Cómo surge el “Lean Construction”? 2. ¿Cuáles son sus actividades, funciones y cometidos? 3. ¿Existe regulación del ¨Lean Construction” en otros países? 4. ¿Existe demanda del ¨Lean Construction” en España? 5. ¿Existe regulación del ¨Lean Construction” en España? 6. ¿Cómo debería ser la regulación ¨Lean Construction” en España? 7. ¿Cuál es la relación del “Lean Construction” con el “Project & Construction Management”? 8. ¿Cómo debería ser la regulación de “Lean Construction” en España considerando su relación con el “Project & Construction Management”? Las preguntas indicadas las hemos respondido detalladamente en el presente trabajo, a continuación se resume las respuestas a dichas preguntas: 1. El “Lean Construction” surge en agosto de 1992, cuando el investigador finlandés Lauri Koskela publicó en la Universidad de Stanford el reporte TECHNICAL REPORT N° 72 titulado “Application of the New Production Philosophy to Construction”. Un año más tarde el Dr. Koskela invitó a un grupo de especialistas en construcción al primer workshop de esta materia en Finlandia, dando origen al International Group for Lean Construction (IGLC) lo que ha permitido extender la filosofía a EEUU, Europa, América, Asia, Oceanía y África. “Lean Construction” es un sistema basado en el enfoque “Lean Production” desarrollado en Japón por Toyota Motors a partir de los años cincuenta, sistema que permitió a sus fábricas producir unidades con mayor eficiencia que las industrias americanas, con menores recursos, en menor tiempo, y con un número menor de errores de fabricación. 2. El sistema “Lean Construction” busca maximizar el valor y disminuir las pérdidas de los proyectos generando una coordinación eficiente entre los involucrados, manejando un proyecto como un sistema de producción, estrechando la colaboración entre los participantes de los proyectos, capacitándoles y empoderándoles, fomentando una cultura de cambio. Su propósito es desarrollar un proceso de construcción en el que no hayan accidentes, ni daños a equipos, instalaciones, entorno y comunidad, que se realice en conformidad con los requerimientos contractuales, sin defectos, en el plazo requerido, respetando los costes presupuestados y con un claro enfoque en la eliminación o reducción de las pérdidas, es decir, las actividades que no generen beneficios. El “Last Planner System”, o “Sistema del Último Planificador”, es un sistema del “Lean Construction” que por su propia naturaleza protege a la planificación y, por ende, ayuda a maximizar el valor y minimizar las pérdidas, optimizando de manera sustancial los sistemas de seguridad y salud. El “Lean Construction” se inició como un concepto enfocado a la ejecución de las obras, posteriormente se aplicó la filosofía a todas las etapas del proyecto. Actualmente considera el desarrollo total de un proyecto, desde que nace la idea hasta la culminación de la obra y puesta en marcha, considerando el ciclo de vida completo del proyecto. Es una filosofía de gestión, metodologías de trabajo y una cultura empresarial orientada a la eficiencia de los procesos y flujos. La filosofía “Lean Construction” se está expandiendo en todo el mundo, además está creciendo en su alcance, influyendo en la gestión contractual de los proyectos. Su primera evolución consistió en la creación del sistema “Lean Project Delivery System”, que es el concepto global de desarrollo de proyectos. Posteriormente, se proponen el “Target Value Design”, que consiste en diseñar de forma colaborativa para alcanzar los costes y el valor requerido, y el “Integrated Project Delivery”, en relación con sistemas de contratos relacionales (colaborativos) integrados, distintos a los contratos convencionales. 3. Se verificó que no existe regulación específica del ¨Lean Construction” en otros países, en otras palabras, no existe el agente con el nombre específico de “Especialista en Lean Construction” o similar, en consecuencia, es un agente adicional en el proyecto de la edificación, cuyas funciones y cometidos se pueden solapar con los del “Project Manager”, “Construction Manager”, “Contract Manager”, “Safety Manager”, entre otros. Sin embargo, se comprobó la existencia de formatos privados de contratos colaborativos de Integrated Project Delivery, los cuales podrían ser tomados como unas primeras referencias para futuras regulaciones. 4. Se verificó que sí existe demanda del ¨Lean Construction” en el desarrollo del presente trabajo, aunque aún su uso es incipiente, cada día existe más interesados en el tema. 5. No existe regulación del ¨Lean Construction” en España. 6. Uno de los objetivos fundamentales de esta tesis es el de regular esta figura cuando actúe en un proyecto, definir y realizar una estructura de Agente de la Edificación, según la Ley de Ordenación de la Edificación (LOE), y de esta manera poder introducirla dentro de la Legislación Española, protegiéndola de eventuales responsabilidades civiles. En España existe jurisprudencia (sentencias de los tribunales de justicia españoles) con jurisdicción civil basada en la LOE para absolver o condenar a agentes de la edificación que son definidos en los tribunales como “gestores constructivos” o similares. Por este motivo, en un futuro los tribunales podrían dictaminar responsabilidades solidarias entre el especialista “Lean Construction” y otros agentes del proyecto, dependiendo de sus actuaciones, y según se implemente el “Lean Project Delivery System”, el “Target Value Design” y el “Integrated Project Delivery”. Por otro lado, es posible que el nivel de actuación del especialista “Lean Construcción” pueda abarcar la gestión del diseño, la gestión de la ejecución material (construcción), la gestión de contratos, o la gestión integral de todo el proyecto de edificación, esto último, en concordancia con la última Norma ISO 21500:2012 o UNE-ISO 21500:2013 Directrices para la dirección y gestión de proyectos. En consecuencia, se debería incorporar adecuadamente a uno o más agentes de la edificación en la LOE de acuerdo a sus funciones y responsabilidades según los niveles de actuación del “Especialista en Lean Construction”. Se propone la creación de los siguientes agentes: Gestor del Diseño, Gestor Constructivo y Gestor de Contratos, cuyas definiciones están desarrolladas en este trabajo. Estas figuras son definidas de manera general, puesto que cualquier “Project Manager” o “DIPE”, gestor BIM (Building Information Modeling), o similar, puede actuar como uno o varios de ellos. También se propone la creación del agente “Gestor de la Construcción sin Pérdidas”, como aquel agente que asume las actuaciones del “gestor de diseño”, “gestor constructivo” y “gestor de contratos” con un enfoque en los principios del Lean Production. 7. En la tesis se demuestra, por medio del uso de la ISO 21500, que ambos sistemas son complementarios, de manera que los proyectos pueden tener ambos enfoques y ser compatibilizados. Un proyecto que use el “Project & Construction Management” puede perfectamente apoyarse en las herramientas y técnicas del “Lean Construction” para asegurar la eliminación o reducción de las pérdidas, es decir, las actividades que no generen valor, diseñando el sistema de producción, el sistema de diseño o el sistema de contratos. 8. Se debería incorporar adecuadamente al agente de la edificación “Especialista en Lean Construction” o similar y al agente ¨Especialista en Project & Construction Management” o DIPE en la Ley de Ordenación de la Edificación (LOE) de acuerdo a sus funciones y responsabilidades, puesto que la jurisprudencia se ha basado para absolver o condenar en la referida Ley. Uno de los objetivos fundamentales de esta tesis es el de regular la figura del “Especialista en Lean Construction” cuando actúa simultáneamente con el DIPE, y realizar una estructura de Agente de la Edificación según la LOE, y de esta manera protegerlo de eventuales responsabilidades solidarias. Esta investigación comprueba que la propuesta de definición del agente de edificación DIPE, según la LOE, presentada en la tesis doctoral del Doctor Manuel Soler Severino es compatible con las nuevas definiciones propuestas. El agente DIPE puede asumir los roles de los diferentes gestores propuestos en esta tesis si es que se especializa en dichas materias, o, si lo estima pertinente, recomendar sus contrataciones. ABSTRACT This work is based on the Lean Construction philosophy; an analysis is made herein with regard to the situation of this philosophy in the building sector within the international and Spanish context, replying to the following questions: 1. How did the concept of Lean Construction emerge? 2. Which are the activities, functions and objectives of Lean Construction? 3. Are there regulations on Lean Construction in other countries? 4. Is there a demand for Lean Construction in Spain? 5. Are there regulations on Lean Construction in Spain? 6. How should regulations on Lean Construction be developed in Spain? 7. What is the relationship between Lean Construction and the Project & Construction Management? 8. How should regulations on Lean Construction be developed in Spain considering its relationship with the Project & Construction Management? We have answered these questions in detail here and the replies are summarized as follows: 1. The concept of Lean Construction emerged in august of 1992, when Finnish researcher Lauri Koskela published in Stanford University TECHNICAL REPORT N° 72 entitled “Application of the New Production Philosophy to Construction”. A year later, Professor Koskela invited a group of construction specialists to Finland to the first workshop conducted on this matter; thus, the International Group for Lean Construction (IGLC) was established, which has contributed to extending the philosophy to the United States, Europe, the Americas, Asia, Oceania, and Africa. Lean Construction is a system based on the Lean Production approach, which was developed in Japan by Toyota Motors in the 1950s. Thanks to this system, the Toyota plants were able to produce more units, with greater efficiency than the American industry, less resources, in less time, and with fewer manufacturing errors. 2. The Lean Construction system aims at maximizing the value of projects while reducing waste, producing an effective coordination among those involved; it manages projects as a production system, enhancing collaboration between the parties that participate in the projects while building their capacities, empowering them, and promoting a culture of change. Its purpose is to develop a construction process free of accidents, without damages to the equipment, facilities, environment and community, flawless, in accordance with contractual requirements, within the terms established, respecting budgeted costs, and with a clear approach to eliminating or reducing waste, that is, activities that do not generate benefits. The Last Planner System is a Lean Construction system, which by its own nature protects planning and, therefore, helps to maximize the value and minimize waste, optimizing substantially the safety and health systems. Lean Construction started as a concept focused on the execution of works, and subsequently the philosophy was applied to all the stages of the project. At present it considers the project’s total development, since the time ideas are born until the completion and start-up of the work, taking into account the entire life cycle of the project. It is a philosophy of management, work methodologies, and entrepreneurial culture aimed at the effectiveness of processes and flows. The Lean Construction philosophy is extending all over the world and its scope is becoming broader, having greater influence on the contractual management of projects. It evolved initially through the creation of the Lean Project Delivery System, a global project development concept. Later on, the Target Value Design was developed, based on collaborative design to achieve the costs and value required, as well as the Integrated Project Delivery, in connection with integrated relational (collaborative) contract systems, as opposed to conventional contracts. 3. It was verified that no specific regulations on Lean Construction exist in other countries, in other words, there are no agents with the specific name of “Lean Construction Specialist” or other similar names; therefore, it is an additional agent in building projects, which functions and objectives can overlap those of the Project Manager, Construction Manager, Contract Manager, or Safety Manager, among others. However, the existence of private collaborative contracts of Integrated Project Delivery was confirmed, which could be considered as first references for future regulations. 4. There is a demand for Lean Construction in the development of this work; even though it is still emerging, there is a growing interest in this topic. 5. There are no regulations on Lean Construction in Spain. 6. One of the main objectives of this thesis is to regulate this role when acting in a project, and to define and develop a Building Agent structure, according to the Building Standards Law (LOE by its acronym in Spanish), in order to be able to incorporate it into the Spanish law, protecting it from civil liabilities. In Spain there is jurisprudence in civil jurisdiction based on the LOE to acquit or convict building agents, which are defined in the courts as “construction managers” or similar. For this reason, courts could establish in the future joint and several liabilities between the Lean Construction Specialist and other agents of the project, depending on their actions and based on the implementation of the Lean Project Delivery System, the Target Value Design, and the Integrated Project Delivery. On the other hand, it is possible that the level of action of the Lean Construction Specialist may comprise design management, construction management and contract management, or the integral management of the entire building project in accordance with the last ISO 21500:2012 or UNE-ISO 21500:2013, guidelines for the management of projects. Accordingly, one or more building agents should be appropriately incorporated into the LOE according to their functions and responsibilities and based on the levels of action of the Lean Construction Specialist. The creation of the following agents is proposed: Design Manager, Construction Manager, and Contract Manager, which definitions are developed in this work. These agents are defined in general, since any Project Manager or DIPE, Building Information Modeling (BIM) Manager or similar, may act as one or as many of them. The creation of the Lean Construction Manager is also proposed, as the agent that takes on the role of the Design Manager, Construction Manager and Contract Manager with a focus on the Lean Production principles. 7. In the thesis it is demonstrated that through the implementation of the ISO 21500, both systems are supplementary, so projects may have both approaches and be compatible. A project that applies the Project & Construction Management may perfectly have the support of the tools, techniques and practices of Lean Construction to ensure the elimination or reduction of losses, that is, those activities that do not generate value, thus designing the production system, the design system, or the contract system. 8. The Lean Construction Specialist or similar and the Specialist in Project & Construction Management should be incorporated appropriately into the LOE according to their functions and responsibilities, since jurisprudence has been based on such Law to acquit or convict. One of the main objectives of this thesis is the regulate the role of the Lean Construction Specialist when acting simultaneously with the DIPE, and to develop a structure of the building agent, according to the LOE, and in this way protect such agent from joint and several liabilities. This research proves that the proposal to define the DIPE building agent, according to the LOE, and presented in the doctoral dissertation of Manuel Soler Severino, Ph.D. is compatible with the new definitions proposed. The DIPE agent may assume the roles of the different managers proposed in this thesis if he specializes in those topics or, if deemed pertinent, recommends that they be engaged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life cycle models have become important in explaining the changing size structure of firms based on the carrying capacity of regions or industries. In particular, the population ecology model predicts stages of growth, maturity and eventually decline in the number of firms in an industry. There has been criticism of such models because of their focus on external variables as pre-determinants of the potential for enterprise development. This paper attempts to reconcile the external focus of the population ecology model with relevant internal management factors in enterprise development. A survey was conducted of Australian services exporters, and the results not only confirm the existence of four separate life cycle stages in the population ecology model, but also identify the external and internal variables that are strategically relevant at each of the stages. The findings provide potentially useful information in a range of contexts including the design of small business assistance as well a providing “guide posts” to entrepreneurs engaged in enterprise development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional project management techniques are not always sufficient for ensuring time, cost and quality achievement of large-scale construction projects due to complexity in planning and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in Government policies and regulations, unforeseen inflation) under-estimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk numagement throughout project life cycle. However, the effectiveness of risk management depends on the technique in which the effects of risk factors are analysed and! or quantified. This study proposes Analytic Hierarchy Process (AHP), a multiple attribute decision-making technique as a tool for risk analysis because it can handle subjective as well as objective factors in decision model that are conflicting in nature. This provides a decision support system (DSS) to project managenumt for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and competitive business environment. The whole methodology is explained through a case study of a cross-country petroleum pipeline project in India and its effectiveness in project1nana.gement is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports preliminary results of a project investigating how staff in UK organisations perceive knowledge management in their organisation as a group. The group setting appears to be effective in surfacing opinions and enabling progress in both understanding and action to be made. Among the findings thus far are the importance of the knowledge champion role and the state of the “knowledge management life cycle” in each organisation, and continuing confusion between knowledge, information and mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports results from an ongoing project examining what managers think about knowledge management in the context of their organisation. This was done in a facilitated computerassisted group workshop environment. Here we compare the outcomes of workshops held for two relatively large UK organisations, one public sector and the other private. Our conclusions are that there are relatively few differences between the perceptions of these two groups of managers, and that these differences stem more from the stage of the knowledge management life cycle that the two organisations have reached, rather than from the difference in context between public and private sector. © iKMS & World Scientific Publishing Co.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a more profound discussion of the philosophical underpins of sustainability than currently exists in the MOT literature and considers their influence on the construction of the theories on green operations and technology management. Ultimately, it also debates the link between theory and practice on this subject area. The paper is derived from insights gained in three research projects completed during the past twelve years, primarily involving the first author. From 2000 to 2002, an investigation using scenario analysis, aimed at reducing atmospheric pollution in urban centres by substituting natural gas for petrol and diesel, provided the first set of insights about public policy, environmental impacts, investment analysis, and technological feasibility. The second research project, from 2003 to 2005, using a survey questionnaire, was aimed at improving environmental performance in livestock farming and explored the issues of green supply chain scope, environmental strategy and priorities. Finally, the third project, from 2006 to 2011, investigated environmental decisions in manufacturing organisations through case study research and examined the underlying sustainability drivers and decision-making processes. By integrating the findings and conclusions from these projects, the link between philosophy, theory, and practice of green operations and technology management is debated. The findings from all these studies show that the philosophical debate seems to have little influence on theory building so far. For instance, although ‘sustainable development’ emphasises ‘meeting the needs of current and future generation’, no theory links essentiality and environmental impacts. Likewise, there is a weak link between theory and the practical issues of green operations and technology management. For example, the well-known ‘life-cycle analysis’ has little application in many cases because the life cycle of products these days is dispersed within global production and consumption systems and there are different stakeholders for each life cycle stage. The results from this paper are relevant to public policy making and corporate environmental strategy and decision making. Most of the past and current studies in the subject of green operations and sustainability management deal with only a single sustainability dimension at any one time. Here the value and originality of this paper lies in its integration between philosophy, theory, and practice of green technology and operations management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional project management techniques are not always sufficient to ensure that schedule, cost and quality goals are met on large-scale construction projects. These jobs require complex planning, designing and implementation processes. The main reasons for a project's nonachievement in India's hydrocarbon processing industry are changes in scope and design, altered government policies and regulations, unforeseen inflation, under and/or improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed by applying risk management throughout the project life cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper gives an overview about the ongoing FP6-IST INFRAWEBS project and describes the main layers and software components embedded in an application oriented realisation framework. An important part of INFRAWEBS is a Semantic Web Unit (SWU) – a collaboration platform and interoperable middleware for ontology-based handling and maintaining of SWS. The framework provides knowledge about a specific domain and relies on ontologies to structure and exchange this knowledge to semantic service development modules. INFRAWEBS Designer and Composer are sub-modules of SWU responsible for creating Semantic Web Services using Case-Based Reasoning approach. The Service Access Middleware (SAM) is responsible for building up the communication channels between users and various other modules. It serves as a generic middleware for deployment of Semantic Web Services. This software toolset provides a development framework for creating and maintaining the full-life-cycle of Semantic Web Services with specific application support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miami-Dade County implemented a series of water conservation programs, which included rebate/exchange incentives to encourage the use of high efficiency aerators (AR), showerheads (SH), toilets (HET) and clothes washers (HEW), to respond to the environmental sustainability issue in urban areas. This study first used panel data analysis of water consumption to evaluate the performance and actual water savings of individual programs. Integrated water demand model has also been developed for incorporating property’s physical characteristics into the water consumption profiles. Life cycle assessment (with emphasis on end-use stage in water system) of water intense appliances was conducted to determine the environmental impacts brought by each practice. Approximately 6 to 10 % of water has been saved in the first and second year of implementation of high efficiency appliances, and with continuing savings in the third and fourth years. Water savings (gallons per household per day) for water efficiency appliances were observed at 28 (11.1%) for SH, 34.7 (13.3%) for HET, and 39.7 (14.5%) for HEW. Furthermore, the estimated contributions of high efficiency appliances for reducing water demand in the integrated water demand model were between 5 and 19% (highest in the AR program). Results indicated that adoption of more than one type of water efficiency appliance could significantly reduce residential water demand. For the sustainable water management strategies, the appropriate water conservation rate was projected to be 1 to 2 million gallons per day (MGD) through 2030. With 2 MGD of water savings, the estimated per capita water use (GPCD) could be reduced from approximately 140 to 122 GPCD. Additional efforts are needed to reduce the water demand to US EPA’s “Water Sense” conservation levels of 70 GPCD by 2030. Life cycle assessment results showed that environmental impacts (water and energy demands and greenhouse gas emissions) from end-use and demand phases are most significant within the water system, particularly due to water heating (73% for clothes washer and 93% for showerhead). Estimations of optimal lifespan for appliances (8 to 21 years) implied that earlier replacement with efficiency models is encouraged in order to minimize the environmental impacts brought by current practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gli ultimi 10 anni hanno visto un crescente aumento delle richieste di fornitura di servizi legati alla manutenzione edilizia da parte della Grande Distribuzione Organizzata; la domanda è quella di servizi riconducibili al Facility Management, ovvero rapporti basati sul raggiungimento di standard qualitativi predefiniti in sede contrattuale e garanzia di intervento 24h/24. Nella prima parte del progetto di tesi viene inquadrata la disciplina del FM, le motivazioni, gli strumenti e gli attori coinvolti. Dopo un excursus normativo sulla manutenzione in Italia, una classificazione delle tipologie di intervento manutentivo e una valutazione sull’incidenza della manutenzione nel Life Cycle Cost, viene effettuata un’analisi delle modalità interoperative del FM applicato alla manutenzione edilizia nel caso della GDO. La tesi è stata svolta nell'ambito di un tirocinio in azienda, il che ha permesso alla laureanda di affrontare il caso di studio di un contratto di Global Service con un’importante catena di grande distribuzione, e di utilizzare un software gestionale (PlaNet) con il quale viene tenuta traccia, per ogni punto vendita, degli interventi manutentivi e della loro localizzazione nell’edificio. Questo permette di avere un quadro completo degli interventi, con modalità di attuazione già note, e garantisce una gestione più efficace delle chiamate, seguite tramite un modulo di Call Center integrato. La tesi esamina criticamente i principali documenti di riferimento per l’opera collegati alla manutenzione: il Piano di Manutenzione e il Fascicolo dell’Opera, evidenziando i limiti legati alla non completezza delle informazioni fornite. L’obbiettivo finale della tesi è quello di proporre un documento integrativo tra il Piano di Manutenzione e il Fascicolo, al fine di snellire il flusso informativo e creare un documento di riferimento completo ed esaustivo, che integra sia gli aspetti tecnici delle modalità manutentive, sia le prescrizioni sulla sicurezza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inadequate final disposal of municipal solid waste (MSW) is associated with significant greenhouse gas (GHG) emission, environmental, health and safety issues, space consumption, public health and developmental issues in general. The environmental impact of waste is mostly felt in developing countries, inadequate waste management and treatment solution, inadequate policies and outdated practices are some of the factors leading to the significantly high final disposal of waste in dumps in developing countries. Brazil and other developing countries are changing the status quo by adopting polices that will adequately address this problem of inadequate waste management and disposal. Life cycle analysis (LCA) identifies the potential environmental impact of a product though environmental impact assessment, International Organization for Standardization (ISO) created the ISO 14040 and ISO 14044 to serve as principle guidelines for conducting LCA. Various waste treatment solution was applied to identify the waste management solution with the least Global warming potential (GWP) for treating the MSW generated from the city of Rio de Janerio, while reducing significantly final waste disposed in landfill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento, Biologia (Ciências do Mar), 5 de Julho de 2013, Universidade dos Açores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 11: Reference and Conceptual Models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of energy harvesting materials for large infrastructure is a promising and growing field. In this regard, the use of such harvesters for the purpose of structural health monitoring of bridges has been proposed in recent times as one of the feasible options since the deployment of them can remove the necessity of an external power source. This paper addresses the performance issue of such monitors over the life-cycle of a bridge as it deteriorates and the live load on the structure increases. In this regard, a Lead Zirconate Titanate (PZT) material is considered as the energy harvesting material and a comparison is carried out over the operational life of a reinforced concrete bridge. The evolution of annual average daily traffic (AADT) is taken into consideration, as is the degradation of the structure over time, due to the effects of corrosion. Evolution of such harvested energy is estimated over the life-cycle of the bridge and the sensitivity of harvested energy is investigated for varying rates of degradation and changes in AADT. The study allows for designing and understanding the potential of energy harvesters as a health monitor for bridges. This paper also illustrates how the natural growth of traffic on a bridge over time can accentuate the identification of damage, which is desirable for an ageing structure. The paper also assesses the impact and effects of deployment of harvesters in a bridge as a part of its design process, considering performance over the entire life-cycle versus a deployment at a certain age of the structure.