955 resultados para Yellow birch.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gentiana lutea L. (yellow gentian, Gentianaceae) is an important medicinal plant under protection as endangered species in most European countries. The aim of this work was to evaluate variation in seed mass, seed water content, and seed germination among 56 wild accessions of G. lutea. The effect of gibberellic acid (GA3), putrescine, moist chilling, and level of ripeness of seeds on subsequent germination was also investigated. Seeds of G. lutea showed physiological dormancy (final germination percentages ranged from 0% to 11%, depending on the accession) and GA3 enhanced seed germination drastically in all the accessions. The highest germination (99%) of GA3-treated seeds was reached at 15 °C. Final germination percentage and germination rate (as expressed by mean germination time), as well as seed mass and seed water content, varied significantly among accessions. In general, 1 year moist chilling did not significantly enhance G. lutea seed germination. For most accessions, no significant differences were found between fully ripe seeds and less ripe seeds for seed water content, seed mass, and seed germination. Applications of GA3 were always most effective than those of putrescine for increasing seed germination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although everybody should know thatmeasurements are never performed directly onmaterials but on devices, this is not generally true. Devices are physical systems able to exchange energy and thus subject to the laws of physics, which determine the information they provide. Hence, we should not overlook device effects in measurements as we do by assuming naively that photoluminescence (PL) is bulk emission free fromsurface effects. By replacing this unjustified assumption with a propermodel forGaN surface devices, their yellow band PL becomes surface-assisted luminescence that allows for the prediction of the weak electroluminescence recently observed in n-GaN devices when holes are brought to their surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. The devices are driven under pulsed operation up to 1300 A/cm2 without traces of efficiency droop. Electroluminescence spectra show a very small blue shift with increasing current, (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conclude that Bet v 1 and Bos d 5 not only structurally mimic human LCN2, but also functionally by their ability to bind iron via siderophores. The apo-forms promote Th2 cells, whereas the holo-forms appear to be immunosuppressive. These results provide for the first time a functional understanding on the principle of allergenicity of major allergens from entirely independent sources, like birch and milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chromophore of photoactive yellow protein (PYP) (i.e., 4-hydroxycinnamic acid) has been replaced by an analogue with a triple bond, rather than a double bond (by using 4-hydroxyphenylpropiolic acid in the reconstitution, yielding hybrid I) and by a “locked” chromophore (through reconstitution with 7-hydroxycoumarin-3-carboxylic acid, in which a covalent bridge is present across the vinyl bond, resulting in hybrid II). These hybrids absorb maximally at 464 and 443 nm, respectively, which indicates that in both hybrids the deprotonated chromophore does fit into the chromophore-binding pocket. Because the triple bond cannot undergo cis/trans (or E/Z) photoisomerization and because of the presence of the lock across the vinyl double bond in hybrid II, it was predicted that these two hybrids would not be able to photocycle. Surprisingly, both are able. We have demonstrated this ability by making use of transient absorption, low-temperature absorption, and Fourier-transform infrared (FTIR) spectroscopy. Both hybrids, upon photoexcitation, display authentic photocycle signals in terms of a red-shifted intermediate; hybrid I, in addition, goes through a blue-shifted-like intermediate state, with very slow kinetics. We interpret these results as further evidence that rotation of the carbonyl group of the thioester-linked chromophore of PYP, proposed in a previous FTIR study and visualized in recent time-resolved x-ray diffraction experiments, is of critical importance for photoactivation of PYP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richness, and putative 2- to 4-bp A+T-biased specific target sites. Evidence of previous mobility is presented for the Wukong elements. Elements of these three families are associated with 7 of 16 fully or partially sequenced Ae. aegypti genes. Characteristics of these mosquito elements indicate strong similarities to the miniature inverted-repeat transposable elements (MITEs) recently found to be associated with plant genes. MITE-like elements have also been reported in two species of Xenopus and in Homo sapiens. This characterization of multiple families of highly repetitive MITE-like elements in an invertebrate extends the range of these elements in eukaryotic genomes. A hypothesis is presented relating genome size and organization to the presence of highly reiterated MITE families. The association of MITE-like elements with Ae. aegypti genes shows the same bias toward noncoding regions as in plants. This association has potentially important implications for the evolution of gene regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast excitation-driven fluctuations in the fluorescence emission of yellow-shifted green fluorescent protein mutants T203Y and T203F, with S65G/S72A, are discovered in the 10−6–10−3-s time range, by using fluorescence correlation spectroscopy at 10−8 M. This intensity-dependent flickering is conspicuous at high pH, with rate constants independent of pH and viscosity with a minor temperature effect. The mean flicker rate increases linearly with excitation intensity for at least three decades, but the mean dark fraction of the molecules undergoing these dynamics is independent of illumination intensity over ≈6 × 102 to 5 × 106 W/cm2. These results suggest that optical excitation establishes an equilibration between two molecular states of different spectroscopic properties that are coupled only via the excited state as a gateway. This reversible excitation-driven transition has a quantum efficiency of ≈10−3. Dynamics of external protonation, reversibly quenching the fluorescence, are also observed at low pH in the 10- to 100-μs time range. The independence of these two bright–dark flicker processes implies the existence of at least two separate dark states of these green fluorescent protein mutants. Time-resolved fluorescence measurements reveal a single exponential decay of the excited state population with 3.8-ns lifetime, after 500-nm excitation, that is pH independent. Our fluorescence correlation spectroscopy results are discussed in terms of recent theoretical studies that invoke isomerization of the chromophore as a nonradiative channel of the excited state relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral changes in the photocycle of the photoactive yellow protein (PYP) are investigated by using ab initio multiconfigurational second-order perturbation theory at the available structures experimentally determined. Using the dark ground-state crystal structure [Genick, U. K., Soltis, S. M., Kuhn, P., Canestrelli, I. L. & Getzoff, E. D. (1998) Nature (London) 392, 206–209], the ππ* transition to the lowest excited state is related to the typical blue-light absorption observed at 446 nm. The different nature of the second excited state (nπ*) is consistent with the alternative route detected at 395-nm excitation. The results suggest the low-temperature photoproduct PYPHL as the most plausible candidate for the assignment of the cryogenically trapped early intermediate (Genick et al.). We cannot establish, however, a successful correspondence between the theoretical spectrum for the nanosecond time-resolved x-ray structure [Perman, B., Šrajer, V., Ren, Z., Teng, T., Pradervand, C., et al. (1998) Science 279, 1946–1950] and any of the spectroscopic photoproducts known up to date. It is fully confirmed that the colorless light-activated intermediate recorded by millisecond time-resolved crystallography [Genick, U. K., Borgstahl, G. E. O., Ng, K., Ren, Z., Pradervand, C., et al. (1997) Science 275, 1471–1475] is protonated, nicely matching the spectroscopic features of the photoproduct PYPM. The overall contribution demonstrates that a combined analysis of high-level theoretical results and experimental data can be of great value to perform assignments of detected intermediates in a photocycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) are unable to synthesize the linear tetrapyrrole chromophore of phytochrome, resulting in plants with a yellow-green phenotype. To understand the basis of this phenotype, we investigated the consequences of the au and yg-2 mutations on tetrapyrrole metabolism. Dark-grown seedlings of both mutants have reduced levels of protochlorophyllide (Pchlide) due to an inhibition of Pchlide synthesis. Feeding experiments with the tetrapyrrole precursor 5-aminolevulinic acid (ALA) demonstrate that the pathway between ALA and Pchlide is intact in au and yg-2 and suggest that the reduction in Pchlide is a result of the inhibition of ALA synthesis. This inhibition was independent of any deficiency in seed phytochrome, and experiments using an iron chelator to block heme synthesis demonstrated that both mutations inhibited the degradation of the physiologically active heme pool, suggesting that the reduction in Pchlide synthesis is a consequence of feedback inhibition by heme. We discuss the significance of these results in understanding the chlorophyll-deficient phenotype of the au and yg-2 mutants.