953 resultados para YCOB CRYSTALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ observations on the size and shape of particles in arctic cirrus are less common than those in mid-latitude and tropical cirrus with considerable uncertainty about the contributions of small ice crystals (maximum dimension D<50 µm) to the mass and radiative properties that impact radiative forcing. In situ measurements of small ice crystals in arctic cirrus were made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 during transits of the National Research Council of Canada Convair-580 between Fairbanks and Barrow, Alaska and during Mixed Phase Arctic Cloud Experiment (MPACE) in October 2004 with the University of North Dakota (UND) Citation over Barrow, Alaska. Concentrations of small ice crystals with D < 50 μm from a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Forward Scattering Spectrometer Probe (FSSP), and a two-dimensional stereo probe (2DS) were compared as functions of the concentrations of crystals with D > 100 μm measured by a Cloud Imaging Probe (CIP) and two-dimensional stereo probe (2DS) in order to assess whether the shattering of large ice crystals on protruding components of different probes artificially amplified measurements of small ice crystal concentrations. The dependence of the probe comparison on other variables as CIP N>100 (number concentrations greater than diameter D>100 μm),temperature, relative humidity respect to ice (RHice), dominant habit from the Cloud Particle Imager (CPI), aircraft roll, pitch, true air speed and angle of attack was examined to understand potential causes of discrepancies between probe concentrations. Data collected by these probes were also compared against the data collected by a CAS, CDP and CIP during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) and by a CAS and 2DS during the Tropical Composition, Cloud and Climate Coupling (TC4) missions. During ISDAC, the CAS and FSSP both overestimated measurements of small ice crystals compared to both the CDP and 2DS by 1-2 orders of magnitude. Further, the amount of overestimation increased with the concentrations from the CIP2 (N>100 > 0.1 L-1). There was an unexplained discrepancy in concentrations of small crystals between the CDP and 2DS during ISDAC. In addition, there was a strong dependence on RHice of the average ratios of the N3-50, CAS/N3-50,CDP, N3-50, FSSP096/N3-50,CDP, N3-50, CAS/N3-50,FSSP096, N10-50, CDP/N3-50,2DS, N10-50, FSSP096/N10-50,2DS. Continued studies are needed to understand the discrepancy of these probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO^(R(n)pyH)] + and BF_(4)^(-) , ReO_(4)^(-), NO_(3)^(-), CF_(3)SO_(3)^(-), CuCl_(4)^(2-) counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO^(R(12)pyH)][ReO_(4)] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl_(4)^(2-) salts exhibit the best LC properties followed by the ReO_(4)^(-) ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO_(4)^(-) , and CuCl_(4)^(2-) families, and for the solid phase in one of the non-mesomorphic Cl^(-) salts. The highest ionic conductivity was found for the smectic mesophase of the ReO_(4)^(-) containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the optical properties of nanolayered metal-dielectric lattices. At subwavelength regimes, the periodic array of metallic nanofilms demonstrates nonlocality-induced double refraction, conventional positive and as well as negative. In particular, we report on energy-flow considerations concerning both refractive behaviors concurrently. Numerical simulations provide transmittance of individual beams in Ag-TiO2 metamaterials under different configurations. In regimes of the effective-medium theory predicting elliptic dispersion, negative refraction may be stronger than the expected positive refraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the behavior of granular crystals subjected to impact loading that creates plastic deformation at the contacts between constituent particles. Granular crystals are highly periodic arrangements of spherical particles, arranged into densely packed structures resembling crystals. This special class of granular materials has been shown to have unique dynamics with suggested applications in impact protection. However, previous work has focused on very low amplitude impacts where every contact point can be described using the Hertzian contact law, valid only for purely elastic deformation. In this thesis, we extend previous investigation of the dynamics of granular crystals to significantly higher impact energies more suitable for the majority of applications. Additionally, we demonstrate new properties specific to elastic-plastic granular crystals and discuss their potential applications as well. We first develop a new contact law to describe the interaction between particles for large amplitude compression of elastic-plastic spherical particles including a formulation for strain-rate dependent plasticity. We numerically and experimentally demonstrate the applicability of this contact law to a variety of materials typically used in granular crystals. We then extend our investigation to one-dimensional chains of elastic-plastic particles, including chains of alternating dissimilar materials. We show that, using the new elastic-plastic contact law, we can predict the speed at which impact waves with plastic dissipation propagate based on the material properties of the constituent particles. Finally, we experimentally and numerically investigate the dynamics of two-dimensional and three-dimensional granular crystals with elastic-plastic contacts. We first show that the predicted wave speeds for 1D granular crystals can be extended to 2D and 3D materials. We then investigate the behavior of waves propagating across oblique interfaces of dissimilar particles. We show that the character of the refracted wave can be predicted using an analog to Snell's law for elastic-plastic granular crystals and ultimately show how it can be used to design impact guiding "lenses" for mitigation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clusters of temporal optical solitons—stable self-localized light pulses preserving their form during propagation—exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal crystals that mathematically correspond to non-Hermitian lattices and examine the types of collective mode instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid state physics to information theory promises a new outlook on information storage and transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When NaCl precipitates out of a saturated solution, it forms anhydrous crystals of halite at temperatures above +0.11?C, but at temperatures below this threshold it instead precipitates as the dihydrate ‘‘hydrohalite,’’ NaCl * 2H2O. When sea ice is cooled, hydrohalite begins to precipitate within brine inclusions at about -23C. In this work, hydrohalite crystals are examined in laboratory experiments: their formation, their shape, and their response to warming and desiccation. Sublimation of a sea ice surface at low temperature leaves a lag deposit of hydrohalite, which has the character of a fine powder. The precipitation of hydrohalite in brine inclusions raises the albedo of sea ice, and the subsequent formation of a surface accumulation further raises the albedo. Although these processes have limited climatic importance on the modern Earth, they would have been important in determining the surface types present in regions of net sublimation on the tropical ocean in the cold phase of a Snowball Earth event. However, brine inclusions in sea ice migrate downward to warmer ice, so whether salt can accumulate on the surface depends on the relative rates of sublimation and migration. The migration rates are measured in a laboratory experiment at temperatures from -2C to -32C; the migration appears to be too slow to prevent formation of a salt crust on Snowball Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present Thesis reports on the various research projects to which I have contributed during my PhD period, working with several research groups, and whose results have been communicated in a number of scientific publications. The main focus of my research activity was to learn, test, exploit and extend the recently developed vdW-DFT (van der Waals corrected Density Functional Theory) methods for computing the structural, vibrational and electronic properties of ordered molecular crystals from first principles. A secondary, and more recent, research activity has been the analysis with microelectrostatic methods of Molecular Dynamics (MD) simulations of disordered molecular systems. While only very unreliable methods based on empirical models were practically usable until a few years ago, accurate calculations of the crystal energy are now possible, thanks to very fast modern computers and to the excellent performance of the best vdW-DFT methods. Accurate energies are particularly important for describing organic molecular solids, since they often exhibit several alternative crystal structures (polymorphs), with very different packing arrangements but very small energy differences. Standard DFT methods do not describe the long-range electron correlations which give rise to the vdW interactions. Although weak, these interactions are extremely sensitive to the packing arrangement, and neglecting them used to be a problem. The calculations of reliable crystal structures and vibrational frequencies has been made possible only recently, thanks to development of some good representations of the vdW contribution to the energy (known as “vdW corrections”).