890 resultados para West Mesoamerica
Resumo:
Selenium (Se) is a micronutrient necessary for the function of a variety of important enzymes; Se also exhibits a narrow range in concentrations between essentiality and toxicity. Oviparous vertebrates such as birds and fish are especially sensitive to Se toxicity, which causes reproductive impairment and defects in embryo development. Selenium occurs naturally in the Earth's crust, but it can be mobilized by a variety of anthropogenic activities, including agricultural practices, coal burning, and mining.
Mountaintop removal/valley fill (MTR/VF) coal mining is a form of surface mining found throughout central Appalachia in the United States that involves blasting off the tops of mountains to access underlying coal seams. Spoil rock from the mountain is placed into adjacent valleys, forming valley fills, which bury stream headwaters and negatively impact surface water quality. This research focused on the biological impacts of Se leached from MTR/VF coal mining operations located around the Mud River, West Virginia.
In order to assess the status of Se in a lotic (flowing) system such as the Mud River, surface water, insects, and fish samples including creek chub (Semotilus atromaculatus) and green sunfish (Lepomis cyanellus) were collected from a mining impacted site as well as from a reference site not impacted by mining. Analysis of samples from the mined site showed increased conductivity and Se in the surface waters compared to the reference site in addition to increased concentrations of Se in insects and fish. Histological analysis of mined site fish gills showed a lack of normal parasites, suggesting parasite populations may be disrupted due to poor water quality. X-ray absorption near edge spectroscopy techniques were used to determine the speciation of Se in insect and creek chub samples. Insects contained approximately 40-50% inorganic Se (selenate and selenite) and 50-60% organic Se (Se-methionine and Se-cystine) while fish tissues contained lower proportions of inorganic Se than insects, instead having higher proportions of organic Se in the forms of methyl-Se-cysteine, Se-cystine, and Se-methionine.
Otoliths, calcified inner ear structures, were also collected from Mud River creek chubs and green sunfish and analyzed for Se content using laser ablation inductively couple mass spectrometry (LA-ICP-MS). Significant differences were found between the two species of fish, based on the concentrations of otolith Se. Green sunfish otoliths from all sites contained background or low concentrations of otolith Se (< 1 µg/g) that were not significantly different between mined and unmined sites. In contrast creek chub otoliths from the historically mined site contained much higher (≥ 5 µg/g, up to approximately 68 µg/g) concentrations of Se than for the same species in the unmined site or for the green sunfish. Otolith Se concentrations were related to muscle Se concentrations for creek chubs (R2 = 0.54, p = 0.0002 for the last 20% of the otolith Se versus muscle Se) while no relationship was observed for green sunfish.
Additional experiments using biofilms grown in the Mud River showed increased Se in mined site biofilms compared to the reference site. When we fed fathead minnows (Pimephales promelas) on these biofilms in the laboratory they accumulated higher concentrations of Se in liver and ovary tissues compared to fathead minnows fed on reference site biofilms. No differences in Se accumulation were found in muscle from either treatment group. Biofilms were also centrifuged and separated into filamentous green algae and the remaining diatom fraction. The majority of Se was found in the diatom fraction with only about 1/3rd of total biofilm Se concentration present in the filamentous green algae fraction
Finally, zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and L-selenomethionine in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). L-selenomethionine, however, induced significantly higher deformity rates at 100 µg/L compared to controls. Antioxidant rescue of L-selenomethionime induced deformities was attempted in embryos using N-acetylcysteine (NAC). Pretreatment with NAC significantly reduced deformities in the zebrafish embryos secondarily treated with L-selenomethionine, suggesting that oxidative stress may play a role in Se toxicity. Selenite exposure also induced a 6.6-fold increase in glutathione-S-transferase pi class 2 gene expression, which is involved in xenobiotic transformation. No changes in gene expression were observed for selenate or L-selenomethionine-exposed embryos.
The findings in this dissertation contribute to the understanding of how Se bioaccumulates in a lotic system and is transferred through a simulated foodweb in addition to further exploring oxidative stress as a potential mechanism for Se-induced embryo toxicity. Future studies should continue to pursue the role of oxidative stress and other mechanisms in Se toxicity and the biotransformation of Se in aquatic ecosystems.
Resumo:
Dai ethnic mathematical culture is an important part of Dai ethnic culture. Mathematical elements show in their daily life. Through a research project of the Yunnan Dehong Dai people in southwest China, We collected the first-hand information, tried to do a small investigative study, and collected mathematics teaching resources that is useful to primary and secondary schools students on mathematics learning in this minority areas. Keyword: Dai ethnic; Mathematical culture; Primary and secondary schools; Teaching resources.
Resumo:
Reviews of: [1] James E. Hoch, Semitic Words in Egyptian Texts of the New Kingdom and Third Intermediate Period, (1994), Princeton University Press. [2] Daniel Sivan and Zipora Cochavi-Rainey, West Semitic Vocabulary in Egyptian Script of the 14th to the 10th Centuries BCE, (1992), Ben-Gurion University of the Negev Press.
Resumo:
The UK and EU have recently committed to an ecosystem-based approach to the management of our marine environment. In line with the requirements of the Habitats regulations, all consents likely to significantly affect Special Areas of Conservation (SACs) and Special Protection Areas (SPAs) are to be reviewed. As part of this process, 'site characterisation' is seen as an important first step towards the improved management of designated sites. This characterisation series, undertaken by the Marine Biological Association of the United Kingdom and funded by the Environment Agency and English Nature, sets out to determine the current status of designated marine sites in South West England, and how vulnerable (or robust) they are to contaminants (metals, organics, nutrients) and other anthropogenic pressures. Using published information and unpublished data-sets from regulatory agencies, conservation bodies and research institutes (particularly those of the PMPS*), evidence is compiled on the links between potentially harmful 'activities', environmental quality, and resultant biological consequences. This includes an evaluation of long-term change. The focus is the effect of water and sediment quality on the key interest features of European Marine sites in the South West of England, namely: - Fal and Helford cSAC (MBA Occasional Publication 8) - Plymouth Sound and Estuaries cSAC/ SPA (MBA Occasional Publication 9) - Exe Estuary SPA (MBA Occasional Publication 10) - Chesil and the Fleet cSAC/ SPA (MBA Occasional Publication 11) - Poole Harbour SPA (MBA Occasional Publication 12) - Severn Estuary pSAC/SPA (MBA Occasional Publication 13) Detailed analysis for each of these sites is provided individually. The summary report contains an overview of physical properties, uses and vulnerability for each of these sites, together with brief comparisons of pollution sources, chemical exposure (via sediment and water) and evidence of biological impact (from bioaccumulation to community-level response). Limitations of the data, and gaps in our understanding of these systems are highlighted and suggestions are put forward as to where future research and surveillance is most needed. Hopefully this may assist the statutory authorities in targeting future monitoring and remedial activities. * PMSP: Plymouth Marine Sciences Partnership, comprising the Marine Biological Association (MBA), University of Plymouth (UoP), the Sir Alister Hardy Foundation for Ocean Science, and Plymouth Marine Laboratories (PML)