972 resultados para Unrefined dried cane-sugar juice
Resumo:
Process modelling is an integral part of any process industry. Several sugar factory models have been developed over the years to simulate the unit operations. An enhanced and comprehensive milling process simulation model has been developed to analyse the performance of the milling train and to assess the impact of changes and advanced control options for improved operational efficiency. The developed model is incorporated in a proprietary software package ‘SysCAD’. As an example, the milling process model has been used to predict a significant loss of extraction by returning the cush from the juice screen before #3 mill instead of before #2 mill as is more commonly done. Further work is being undertaken to more accurately model extraction processes in a milling train, to examine extraction issues dynamically and to integrate the model into a whole factory model.
Resumo:
Cane fibre content has increased over the past ten years. Some of that increase can be attributed to new varieties selected for release. This paper reviews the existing methods for quantifying the fibre characteristics of a variety, including fibre content and fibre quality measurements – shear strength, impact resistance and short fibre content. The variety selection process is presented and it is reported that fibre content has zero weighting in the current selection index. An updated variety selection approach is proposed, potentially replacing the existing selection process relating to fibre. This alternative approach involves the use of a more complex mill area level model that accounts for harvesting, transport and processing equipment, taking into account capacity, efficiency and operational impacts, along with the end use for the bagasse. The approach will ultimately determine a net economic value for the variety. The methodology lends itself to a determination of the fibre properties that have a significant impact on the economic value so that variety tests can better target the critical properties. A low-pressure compression test is proposed as a good test to provide an assessment of the impact of a variety on milling capacity. NIR methodology is proposed as a technology to lead to a more rapid assessment of fibre properties, and hence the opportunity to more comprehensively test for fibre impacts at an earlier stage of variety development.
Resumo:
The provision of effective training of supervisors and operators is essential if sugar factories are to operate profitably and in an environmentally sustainable and safe manner. The benefits of having supervisor and operator staff with a high level of operational skills are reduced stoppages, increased recovery, improved sugar quality, reduced damage to equipment, and reduced OH&S and environmental impacts. Training of new operators and supervisors in factories has traditionally relied on on-the-job training of the new or inexperienced staff by experienced supervisors and operators, supplemented by courses conducted by contractors such as Sugar Research Institute (SRI). However there is clearly a need for staff to be able to undertake training at any time, drawing on the content of online courses as required. An improved methodology for the training of factory supervisors and operators has been developed by QUT on behalf of a syndicate of mills. The new methodology provides ‘at factory’ learning via self-paced modules. Importantly, the training resources for each module are designed to support the training programs within sugar factories, thereby establishing a benchmark for training across the sugar industry. The modules include notes, training guides and session plans, guidelines for walkthrough tours of the stations, learning activities, resources such as videos, animations, job aids and competency assessments. The materials are available on the web for registered users in Australian Mills and many activities are best undertaken online. Apart from a few interactive online resources, the materials for each module can also be downloaded. The acronym SOTrain (Supervisor and Operator Training) has been applied to the new training program.
Resumo:
Computer modelling has been used extensively in some processes in the sugar industry to achieve significant gains. This paper reviews the investigations carried out over approximately the last twenty five years, including the successes but also areas where problems and delays have been encountered. In that time the capability of both hardware and software have increased dramatically. For some processes such as cane cleaning, cane billet preparation, and sugar drying, the application of computer modelling towards improved equipment design and operation has been quite limited. A particular problem has been the large number of particles and particle interactions in these…
Resumo:
A whole of factory model of a raw sugar factory was developed in SysCAD software to assess and improve factory operations. The integrated sugar factory model ‘Sugar-SysCAD’ includes individual models for milling, heating and clarification, evaporation, crystallisation, steam cycle, sugar dryer and process and injection water circuits. These individual unit operation models can be either used as standalone models to optimise the unit operation or in the integrated mode to provide more accurate prediction of the effects of changes in any part of the process on the outputs of the whole factory process. Using the integrated sugar factory model, the effect of specific process operations can be understood and practical solutions can be determined to address process problems. The paper presents two factory scenarios to show the capabilities of the whole of factory model.
Resumo:
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha^-1 diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t1/2 degradation averaged 49 ± 0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 µg L^-1 respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 µg kg^-1 soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.
Resumo:
Australia is the world’s third largest exporter of raw sugar after Brazil and Thailand, with around $2.0 billion in export earnings. Transport systems play a vital role in the raw sugar production process by transporting the sugarcane crop between farms and mills. In 2013, 87 per cent of sugarcane was transported to mills by cane railway. The total cost of sugarcane transport operations is very high. Over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. A cane railway network mainly involves single track sections and multiple track sections used as passing loops or sidings. The cane railway system performs two main tasks: delivering empty bins from the mill to the sidings for filling by harvesters; and collecting the full bins of cane from the sidings and transporting them to the mill. A typical locomotive run involves an empty train (locomotive and empty bins) departing from the mill, traversing some track sections and delivering bins at specified sidings. The locomotive then, returns to the mill, traversing the same track sections in reverse order, collecting full bins along the way. In practice, a single track section can be occupied by only one train at a time, while more than one train can use a passing loop (parallel sections) at a time. The sugarcane transport system is a complex system that includes a large number of variables and elements. These elements work together to achieve the main system objectives of satisfying both mill and harvester requirements and improving the efficiency of the system in terms of low overall costs. These costs include delay, congestion, operating and maintenance costs. An effective cane rail scheduler will assist the traffic officers at the mill to keep a continuous supply of empty bins to harvesters and full bins to the mill with a minimum cost. This paper addresses the cane rail scheduling problem under rail siding capacity constraints where limited and unlimited siding capacities were investigated with different numbers of trains and different train speeds. The total operating time as a function of the number of trains, train shifts and a limited number of cane bins have been calculated for the different siding capacity constraints. A mathematical programming approach has been used to develop a new scheduler for the cane rail transport system under limited and unlimited constraints. The new scheduler aims to reduce the total costs associated with the cane rail transport system that are a function of the number of bins and total operating costs. The proposed metaheuristic techniques have been used to find near optimal solutions of the cane rail scheduling problem and provide different possible solutions to avoid being stuck in local optima. A numerical investigation and sensitivity analysis study is presented to demonstrate that high quality solutions for large scale cane rail scheduling problems are obtainable in a reasonable time. Keywords: Cane railway, mathematical programming, capacity, metaheuristics
Resumo:
The project will produce practical and relevant benchmarks, protocols and recommendations for the adoption of remote sensing technologies for improved in season management and therefore production within the Australian sugar cane industry.
Resumo:
Quantify soil C stocks in grains and sugarcane cropping systems of Queensland, including impacts of management practices.
Resumo:
Provision of technical advice for Tully cane demo farm sites as part of the Paddock-scale monitoring in the Wet Tropics Natural Resource Management region.
Resumo:
Controlled traffic has been identified as the most practical method of reducing compaction-related soil structural degradation in the Australian sugarcane industry. GPS auto-steer systems are required to maximize this potential. Unfortunately there is a perception that little economic gain will result from investing in this technology. Regardless, a number of growers have made the investment and are reaping substantial economic and lifestyle rewards. In this paper we assess the cost effectiveness of installing GPS guidance and using it to implement Precision Controlled Traffic Farming (PCTF) based on the experience of an early adopter. The Farm Economic Analysis Tool (FEAT) model was used with data provided by the grower to demonstrate the benefits of implementing PCTF. The results clearly show that a farming system based on PCTF and the minimum tillage improved farm gross margin by 11.8% and reduced fuel usage by 58%, compared to producers' traditional practice. PCTF and minimum tillage provide sugar producers with a tool to manage the price cost squeeze at a time of low sugar prices. These data provide producers with the evidence that investment in PCTF is economically prudent.
Resumo:
Clarification performance and flocculant dosage is strongly linked to the mud solids loading in the feed entering the clarifier. The recycle of filtrate can represent an extra ~10-15% mud solids loading on the clarifier, thereby reducing its effective capacity. Filtrate recycling may cause significant increase in turbidity, complexed calcium ion formation, phosphate, proteins and polysaccharides in mixed juice that impact on evaporator scale formation and molasses exhaustion. The paper details the results obtained from laboratory, pilot scale and factory trials of filtrate clarification using both sedimentation and flotation methods. Clarified filtrate could be produced of similar quality to ESJ. Filtrate clarification was able to significantly remove insoluble solids, turbidity, phosphate, and polysaccharides content with slight reductions in minerals content of the filtrate. On the basis of improved filtrate quality, the clarified filtrate could be directed to ESJ, instead of the normal practice of directing the mud filtrate to mixed juice. The potential impacts of implementing filtrate clarification are discussed in respect to improved performance and throughput of the clarification station.
Resumo:
Settling, dewatering and filtration of flocs are important steps in industry to remove solids and improve subsequent processing. The influence of non-sucrose impurities (Ca2+, Mg2+, phosphate and aconitic acid) on calcium phosphate floc structure (scattering exponent, Sf), size and shape were examined in synthetic and authentic sugar juices using X-ray diffraction techniques. In synthetic juices, Sf decreases with increasing phosphate concentration to values where loosely bound and branched flocs are formed for effective trapping and removal of impurities. Although, Sf did not change with increasing aconitic acid concentration, the floc size significantly decreased reducing the ability of the flocs to remove impurities. In authentic juices, the flocs structures were marginally affected by increasing proportions of non-sucrose impurities. However, optical microscopy indicated the formation of well-formed macro-floc network structures in sugar cane juices containing lower proportions of non-sucrose impurities. These structures are better placed to remove suspended colloidal solids.
Resumo:
Cane railway systems provide empty bins for harvesters to fill and full bins of cane for the factory to process. These operations need to be conducted in a timely fashion to minimise delays to harvesters and the factory and to minimise the cut-to-crush delay, while also minimising the cost of providing this service. A range of tools has been provided over the years to assist in this process. This paper reviews the objectives of the cane transport system and the tools available to achieve those objectives. The facilities within these tools to assist in the control of costs are highlighted.