942 resultados para Transition metal compounds
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials and dissociation energies of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. The calculated results were compared with previous theoretical and experimental studies. Ground states for each molecule were assigned. It was found that for some molecules, low-lying state, in which the energy is much close to the ground state, was obtained. In this case, further studies both experimentally and theoretically are necessary in order to find the true global minimum.
Resumo:
Anilido phosphinimino ancillary ligand H2L1 reacted with one equivalent of rare earth metal trialkyl [Ln{CH2Si(CH3)(3)}(3)(thf)(2)] (Ln = Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH3)(3)(THF)] (1a: Ln = Y; 1b: Ln = Lu). In this process, deprotonation of H2L1 by one metal alkyl species was followed by intramolecular C-H activation of the phenyl group of the phosphine moiety to generate dianionic species L-1 with release of two equivalnts of tetramethylsilane. Ligand L-1 coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex 1a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL1)LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C-H activation of the phenyl group is reversible. When 1a was exposed to moisture, the hydrolyzed dimeric complex [{(HL1)Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH2Si(CH3)(3)}(3)-(thf)(2)] with amino phosphine ligands HL2-R gave stable rare earth metal bisalkyl complexes [(L2-R)Ln{CH2Si(CH3)(3)}(2)(thf)] (4a: Ln=Y, R=Me; 4b: Ln=Lu, R=Me; 4c: Ln=Y, R=iPr; 4d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4a and 4c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L2-R)Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5a: R=Me; 5b: R=iPr).
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
According to the strong application background of bioflavonoid and metal-flavonoid complexes, novel electrospray ionization tandem mass spectrometry (ESI-MSn) was applied to investigate the structure and fragmentation mechanism of transition metal-rutin complexes. In the full-scan mass spectra, different stoichiometric ratios of rutin-metal complexes were found. In the reaction between rutin and Cu, four kinds of complexes with four different stoichiometric ratios were produced. In the reaction between rutin and Zn, Mn(II), and Fe(II), only two kind of complexes with stoichiometric ratios of 1:1 and 1:2 occured. In further tandem mass spectrometric experiments of different rutin-metal complexes, product fragments, came from the neutral loss of the external rhamnose and the internal glucose unit, oligosaccharide chain, aglycone, and small organic molecules. According to the MSn data, we proposed a mechanism for all fragments of the rutin-Cu complex A and the structure of two rutin-Cu complexes, C and D.
Resumo:
Supramolecular assemblies of liposomes (vesicles) made of diacetylenic lipids and synthetic mannoside derivative glycolipid receptors were successfully used to mimic the molecular recognition occurring between mannose and Escherichia coli. This specific molecular recognition was translated into visible blue-to-red color transition (biochromism) of the polymerized liposomes, readily quantified by UV-visible spectroscopy. Some transition metal cations (Cd2+, Ag+, Cu2+, Fe3+, Zn2+ and Ni2+) and alkali earth metal cations (Ca2+, Mg2+ and Ba2+) were introduced into the system to analyze their effects on specific biochromism. Results showed that the presence of Cd2+, Ag+, Ca2+, Mg2+ and Ba2+ enhanced biochromisin. A possible enhancement mechanism was proposed in the process of bacterial adhesion to host cells. However, Cu2+, Fe3+, Zn2+ and Ni2+ exhibited inhibitory effects that cooperated with diacetylene lipid with a carboxylic group and increased the rigidity of the liposomal outer leaflet, blocking changes in the side chain conformation and electrical structure of polydiacetylene polymer during biochromism.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the title molecules in neutral, positively, and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, BHLYP, BPW91, and B3PW91. The calculated results are compared with experiments and previous theoretical studies. It was found that the calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy and vibrational frequency. For neutral species, pure density functional methods BLYP and BPW91 have relatively good performance in reproducing the experimental bond distance and vibrational frequency. For cations, hybrid exchange functional methods B3LYP and B3PW91 are good in predicting the dissociation energy. For both neutral and charged species, BHLYP tends to give smaller dissociation energy.
Resumo:
Two novel organic-inorganic hybrid compounds, (H(2)enMe)(4)(H3O)[Ni(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (1) and (H(2)enMe)(4)(H3O)[Cu(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (2) (enMe = 1,2-diaminopropane), have been hydrothermally synthesized and characterized by elemental analyses, IR, EPR, XPS, UV-Vis spectra and TG analyses. Single crystal X-ray diffraction shows that 1 and 2 are isostructural compounds. Both the compounds exhibit an unusual two-dimensional (2-D) window-like network consisting of one-dimensional (1-D) chains of sodium molybdenum phosphate anions connected by transition metal coordination complexes cations. Compound 1 and 2 represent the first 2-D molybdenum phosphate skeleton pillared by transition metal complex fragments.
Resumo:
Room-temperature ionic liquids are good solvents for a wide of organic, inorganic and organometallic compounds. Typically consisting of nitrogen-containing organic cations and inorganic anions, they are easy to recycle, nonflammable, and have no detectable vapor pressure. More recently, ionic liquids have been found to be excellent solvents for a number of chemical reactions, e. g. hydrogenation, alkylation, epoxidation, Heck-vinylation, Suzuki cross-coupling reactions and enzyme catalyzed organic reactions. This paper focuses on the recent development of using ionic liquids as solvents for transition metal and enzyme catalyzed reactions.
Resumo:
Electrospray ionization (ESI) and tandem mass spectrometry have been used to investigate the gas-phase interactions of five metal ions and seven dipeptides. For silver ion, two complexes ([M+Ag](+) and [2M+Ag](+)) were obtained as well as the one complex ([2M+Met-H](+)) for transition-metal ions. Upon collision activation, there is an obvious difference in MS/MS data between metal ion complex and the protonated molecule. The fragment pathway of each complex is related to the structures of dipeptide and the nature of metal ion which suggest that there are several interaction between the metal ions and dipeptides in gas phase.
Resumo:
The pentamethylcyclopentadienyl iridium complexes Cp*Ir(PMe3)(E-n) (E = S, n = 4, 5 or 6; E = Se, n = 2 or 4 E = Te, n = 2) react with dimethyl acetylenedicarboxylate to give Cp*Ir(PMe3)[E2C2(COOMe)(2)] compounds which tend to lose the trimethylphosphine ligand; the molecular structure of the dithiolene derivative, Cp*Ir[S2C2(COOMe)(2)], has been determined.
Resumo:
The hydrogenation of alkali metals using lanthanide trichloride and naphthalene as catalyst has been studied. LnCl3(Ln = La, Nd, Sm, Dy, Yb) and naphthalene can catalyze the hydrogenation of sodium under atmospheric pressure and 40-degrees-C to form sodium hydride. The activities of lanthanide trichlorides are in the following order: LaCl3 > NdCl3 > SmCl3 > DyCl3 > YbCl3. Although lithium proceeds in the same catalytic reaction, the kinetic curve of the lithium hydrogenation is different from that of sodium. Lanthanide trichlorides display no catalytic effect on the hydrogenation of potassium in presence of naphthalene. The mechanism of this reaction has been studied and it is suggested that the anion-radical of alkali metal naphthalene complexes may be the intermediate for the hydrogenation of alkali metals and the function of LnCl3 is to catalyze the hydrogenation of the intermediate. The products are porous solids with high specific surface area (83 m2/g for NaH) and pyrophoric in air. They are far more active than the commercial alkali metal hydrides. The combination of these hydrides with some transition metal complexes exhibits high catalytic activity for the hydrogenation of olefins.
Resumo:
The research described in this thesis focuses, principally, on synthesis of stable α-diazosulfoxides and investigation of their reactivity under various reaction conditions (transition-metal catalysed, photochemical, thermal and microwave) with a particular emphasis on the reactive intermediates and mechanistic aspects of the reaction pathways involved. In agreement with previous studies carried out on these compounds, the key reaction pathway of α-diazosulfoxides was found to be hetero-Wolff rearrangement to give α-oxosulfine intermediates. However, a competing reaction pathway involving oxygen migration from sulfur to oxygen was also observed. Critically, isomerisation of α-oxosulfine stereoisomers was observed directly by 1H NMR spectroscopy in this work and this observation accounts for the stereochemical outcomes of the various cycloaddition reactions, whether carried out with in situ trapping or with preformed solutions of sulfines. Furthermore, matrix isolation experiments have shown that electrocyclisation of α-oxosulfines to oxathiiranes takes place and this verifies the proposed mechanisms for enol and disulfide formation. The introductory chapter includes a brief literature review of the synthesis and reactivity of α-diazosulfoxides prior to the commencement of research in this field by the Maguire group. The Wolff rearrangement is also discussed and the characteristic reactions of a number of reactive intermediates (sulfines, sulfenes and oxathiiranes) are outlined. The use of microwave-assisted organic synthesis is also examined, specifically, in the context of α-diazocarbonyl compounds as substrates. The second chapter describes the synthesis of stable monocyclic and bicyclic lactone derivatives of α-diazosulfoxides from sulfide precursors according to established experimental procedures. Approaches to precursors of ketone and sulfimide derivatives of α-diazosulfoxides are also described. The third chapter examines the reactivity of α-diazosulfoxides under thermal, microwave, rhodium(II)-catalysed and photochemical conditions. Comparison of the results obtained under thermal and microwave conditions indicates that there was no evidence for any effect, other than thermal, induced by microwave irradiation. The results of catalyst studies involving several rhodium(II) carboxylate and rhodium(II) carboxamidate catalysts are outlined. Under photochemical conditions, sulfur extrusion is a significant reaction pathway while under thermal or transition metal catalysed conditions, oxygen extrusion is observed. One of the most important observations in this work was the direct spectroscopic observation (by 1H NMR) of interconversion of the E and Z-oxosulfines. Trapping of the α-oxosulfine intermediates as cycloadducts by reaction with 2,3-dimethyl-1,3-butadiene proved useful both synthetically and mechanistically. As the stereochemistry of the α-oxosulfine is retained in the cycloadducts, this provided an ideal method for characterisation of this key feature. In the case of one α-oxosulfine, a novel [2+2] cycloaddition was observed. Preliminary experiments to investigate the reactivity of an α-diazosulfone under rhodium(II) catalysis and microwave irradiation are also described. The fourth chapter describes matrix isolation experiments which were carried out in Rühr Universität, Bochum in collaboration with Prof. Wolfram Sander. These experiments provide direct spectroscopic evidence of an α-oxosulfine intermediate formed by hetero-Wolff rearrangement of an α-diazosulfoxide and subsequent cyclisation of the sulfine to an oxathiirane was also observed. Furthermore, it was possible to identify which stereoisomer of the α-oxosulfine was present in the matrix. A preliminary laser flash photolysis experiment is also discussed. The experimental details, including all spectral and analytical data, are reported at the end of each chapter. The structural interpretation of 1H NMR spectra of the cycloadducts, described in Chapter 3, is discussed in Appendix I.
Resumo:
The research described in this thesis focuses on the design and synthesis of stable α-diazosulfoxides and investigation of their reactivity under a variety of conditions (transition-metal catalysis, thermal, photochemical and microwave) with a particular emphasis on the synthesis of novel heterocyclic compounds with potential biological activity. The exclusive reaction pathway for these α-diazosulfoxides was found to be hetero-Wolff rearrangement to give α-oxosulfine intermediates. In the first chapter, a literature review of sulfines is presented, including a discussion of naturally occurring sulfines, and an overview of the synthesis and reactivity of sulfines. The potential of sulfines in organic synthesis and recent developments in particular are highlighted. The second chapter discusses the synthesis and reactivity of α-diazosulfoxides, building on earlier results in this research group. The synthesis of lactone-based α-diazosulfoxides and, for the first time, ketone-based benzofused and monocyclic α-diazosulfoxides is described. The reactivity of these α-diazosulfoxides is then explored under a variety of conditions, such as transition-metal catalysis, photochemical and microwave, generating labile α-oxosulfine intermediates, which are trapped using amines and dienes, in addition to the spontaneous reaction pathways which occur with α-oxosulfines in the absence of a trap. A new reaction pathway was explored with the lactone based α-oxosulfines, involving reaction with amines to generate novel 3-aminofuran-2(5H)-ones via carbophilic attack, in very good yields. The reactivity of ketone-based α-diazosulfoxides was explored for the first time, and once again, pseudo-Wolff rearrangement to the α-oxosulfines was the exclusive reaction pathway observed. The intermediacy of the α-oxosulfines was confirmed by trapping as cycloadducts, with the stereochemical features dependant on the reaction conditions. In the absence of a diene trap, a number of reaction fates from the α-oxosulfines were observed, including complete sulfinyl extrusion to give indanones, sulfur extrusion to give indanediones, and, to a lesser extent, dimerisation. The indanediones were characterised by trapping as quinoxalines, to enable full characterisation. One of the overriding outcomes of this thesis was the provision of new insights into the behaviour of α-oxosulfines with different transition metal catalysts, and under thermal, microwave and photolysis conditions. A series of 3-aminofuran-2(5H)-ones and benzofused dihydro-2H-thiopyran S-oxides were submitted for anticancer screening at the U.S. National Cancer Institute. A number of these derivatives were identified as hit compounds, with excellent cell growth inhibition. One 3-aminofuran-2(5H)-one derivative has been chosen for further screening. The third chapter details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research. The data for the crystal structures are contained in the attached CD.
Resumo:
This thesis is focused on transition metal catalysed reaction of α-diazoketones leading to aromatic addition to form azulenones, with particular emphasis on enantiocontrol through use of chiral copper catalysts. The first chapter provides an overview of the influence of variation of the substituent at the diazo carbon on the outcome of subsequent reaction pathways, focusing in particular on C-H insertion, cyclopropanation, aromatic addition and ylide formation drawing together for the first time input from a range of primary reports. Chapter two describes the synthesis of a range of novel α-diazoketones. Rhodium and copper catalysed cyclisation of these to form a range of azulenones is described. Variation of the transition metal catalyst was undertaken using both copper and rhodium based systems and ligand variation, including the design and synthesis of a novel bisoxazoline ligand. The influence of additives, especially NaBARF, on the enantiocontrol was explored in detail and displayed an interesting impact which was sensitive to substituent effects. Further exploration demonstrated that it is the sodium cation which is critical in the additive effects. For the first time, enantiocontrol in the aromatic addition of terminal diazoketones was demonstrated indicating enantiofacial control in the aromatic addition is feasible in the absence of a bridgehead substituent. Determination of the enantiopurity in these compounds was particularly challenging due to the lability of the products. A substantial portion of the work was focused on determining the stereochemical outcome of the aromatic addition processes, both the absolute stereochemistry and extent of enantiopurity. Formation of PTAD adducts was beneficial in this regard. The third chapter contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC and 1H NMR analysis are included in the appendix.
Resumo:
Diminishing non-renewable energy resources and planet-wide de-pollution on our planet are among the major problems which mankind faces into the future. To solve these problems, renewable energy sources such as readily available and inexhaustible sunlight will have to be used. There are however no readily available photocatalysts that are photocatalytically active under visible light; it is well established that the band gap of the prototypical photocatalyst, titanium dioxide, is the UV region with the consequence that only 4% of sun light is utilized. For this reason, this PhD project focused on developing new materials, based on titanium dioxide, which can be used in visible light activated photocatalytic hydrogen production and destruction of pollutant molecules. The main goal of this project is to use simulations based on first principles to engineer and understand rationally, materials based on modifying TiO2 that will have the following properties: (1) a suitable band gap in order to increase the efficiency of visible light absorption, with a gap around 2 – 2.5 eV considered optimum. (2). The second key aspect in the photocatalytic process is electron and hole separation after photoexcitation, which enable oxidation/reduction reactions necessary to i.e. decompose pollutants. (3) Enhanced activity over unmodified TiO2. In this thesis I present results on new materials based on modifying TiO2 with supported metal oxide nanoclusters, from two classes, namely: transition metal oxides (Ti, Ni, Cu) and p-block metal oxides (Sn, Pb, Bi). We find that the deposited metal oxide nanoclusters are stable at rutile and anatase TiO2 surfaces and present an analysis of changes to the band gap of TiO2, identifying those modifiers that can change the band gap to the desirable range and the origin of this. A successful collaboration with experimental researchers in Japan confirms many of the simulation results where the origin of improved visible light photocatalytic activity of oxide nanocluster-modified TiO2 is now well understood. The work presented in this thesis, creates a road map for the design of materials with desired photocatalytic properties and contributes to better understanding these properties which are of great application in renewable energy utilization.