986 resultados para Transformada rápida de Fourier
Resumo:
This work consists in the use of techniques of signals processing and artificial neural networks to identify leaks in pipes with multiphase flow. In the traditional methods of leak detection exists a great difficulty to mount a profile, that is adjusted to the found in real conditions of the oil transport. These difficult conditions go since the unevenly soil that cause columns or vacuum throughout pipelines until the presence of multiphases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from ½' to 1' of diameter to simulate leaks and between Upanema and Estreito B, of the UN-RNCE of the Petrobras, where it was possible to detect leaks. The results show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks
Resumo:
This work presents a theoretical and numerical analysis for the radiation characteristics of rectangular microstrip antenna using metamaterial substrate. The full wave analysis is performed in the Fourier transform domain through the application of the Transverse Transmission Line - TTL method. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. The general equations for the electromagnetic fields of the antenna are developed using the Transverse Transmission Line - TTL method. Imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency and return loss for different configurations and substrates
Resumo:
Recently the planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications that needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of y and y . This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular and triangular patches, to obtaining the resonance frequency and radiation pattern of each structure. This method is applied for the treatment of the fields in stacked structures. The Homogenization theory will be applied to obtaining the effective permittivity for s and p polarizations of the substrate composed of PBG material. Numerical results for the triangular and rectangular antennas with single layer, multilayers resonators with triangular and rectangular patches are presented (in photonic and isotropic substrates). Conclusions and suggestions for continuity of this work are presented
Resumo:
The power system stabilizers are used to suppress low-frequency electromechanical oscillations and improve the synchronous generator stability limits. This master thesis proposes a wavelet-based power system stabilizer, composed of a new methodology for extraction and compensation of electromechanical oscillations in electrical power systems based on the scaling coefficient energy of the maximal overlap discrete wavelet transform in order to reduce the effects of delay and attenuation of conventional power system stabilizers. Moreover, the wavelet coefficient energy is used for electric oscillation detection and triggering the power system stabilizer only in fault situations. The performance of the proposed power system stabilizer was assessed with experimental results and comparison with the conventional power system stabilizer. Furthermore, the effects of the mother wavelet were also evaluated in this work
Resumo:
Geopolymers are cementing materials that depict a number of advantages compared to Portland cement. Contrary to the latter, geopolymers are synthesized at room temperature, thus significantly reducing the emission of CO2 to the atmosphere. Moreover, the composition and synthesis reactions can be tailored to adjust the setting time of the material as well as its compressive mechanical strength. It is then possible to produce geopolymeric cements with short setting times and high compressive strength, although relatively brittle. The objective of the present study was to produce and characterize composite materials by reinforcing fastsetting geopolymeric matrixes with polypropylene geosynthetics (geomats and geotextiles) in an attempt to improve the toughness and tensile strength of the cementing material. Geosynthetics have been increasingly used to reinforce engineering structures, providing higher strength and better toughness. In particular, polypropylene nonwoven and geomats depict other attractive properties such as low density, durability, impact absorption and resistance to abrasion. Fast-setting geopolymers were then synthesized and reinforced with polypropylene nonwoven and geomats. The mechanical strength of the materials, reinforced or not, was characterized. The results showed that relatively short setting times and adequate flowing behavior were achieved by adjusting the composition of the geopolymer. In addition, it is possible to improve the fracture resistance of geopolymeric cements by adding polypropylene geosynthetics. The best results were achieved by reinforcing geopolymer with polypropylene TNT
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load
Resumo:
In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment
Resumo:
Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength
Resumo:
Concern for the environment and the exploitation of natural resources has motivated the development of research in lignocellulosic materials, mainly from plant fibers. The major attraction of these materials include the fact that the fibers are biodegradable, they are a renewable natural resource, low cost and they usually produce less wear on equipment manufacturing when compared with synthetic fibers. Its applications are focused on the areas of technology, including automotive, aerospace, marine, civil, among others, due to the advantageous use in economic and ecological terms. Therefore, this study aims to characterize and analyze the properties of plant fiber macambira (bromelia laciniosa), which were obtained in the municipality of Ielmo Marino, in the state of Rio Grande do Norte, located in the region of the Wasteland Potiguar. The characterization of the fiber is given by SEM analysis, tensile test, TG, FTIR, chemical analysis, in addition to obtaining his title and density. The results showed that the extraction of the fibers, only 0.5% of the material is converted into fibers. The results for title and density were satisfactory when compared with other fibers of the same nature. Its structure is composed of microfibrils and its surface is roughened. The cross section has a non-uniform geometry, therefore, it is understood that its diameter is variable along the entire fiber. Values for tensile strength were lower than those of sisal fibers and curauá. The degradation temperature remained equivalent to the degradation temperatures of other vegetable fibers. In FTIR analysis showed that the heat treatment may be an alternative to making the fiber hydrophobic, since, at high temperature can remove the hemicellulose layer, responsible for moisture absorption. Its chemical constitution is endowed with elements of polar nature, so their moisture is around 8.5% which is equivalent to the percentage of moisture content of hydrophilic fibers. It can be concluded that the fiber macambira stands as an alternative materials from renewable sources and depending on the actual application and purpose, it may achieve satisfactory results
Resumo:
Os polímeros biodegradáveis, como o poliácido láctico (PLA) apesar de consolidado nos campos farmacêuticos, médico e biomédico como biomateriais úteis para aplicações variadas, porém, depende da necessidade de funcionalizar a sua superfície estudando suas propriedades tais como hidrofilidade e hidrofobicidade favorecendo a interação do polímero com os materiais de aplicação farmacêutica, médica e biomédica. Este trabalho tem como objetivo produzir um material com características diferentes em cada um de seus lados, sendo um lado hidrofílico e o outro hidrofóbico. O substrato têxtil utilizado neste estudo foi um tecido de malha de composição 100% PLA que é biodegradável e biocompatível, o que possibilita sua aplicação na área biomédica. Para modificação superficial foi utilizado o tratamento a plasma de baixa pressão. A técnica de modificação de superfície por plasma foi escolhida por ser uma tecnologia limpa, anticorrosiva e não tóxica ao contrario de muitos processos químicos convencionais utilizados na indústria têxtil, além disso, não afeta as propriedades de massa do substrato. Neste estudo, um lado da superfície do substrato foi tratado com plasma oxigênio, argônio e nitrogênio, para o trabalho de melhoria da hidrofilidade da superfície e metano para a hidrofobicidade da amostra. A espectroscopia de emissão ótica (OEE) foi utilizada para fazer o diagnóstico das espécies do plasma durante o tratamento. Após o tratamento a plasma as amostras foram caracterizadas por medidas de ângulo de contato, microscopia eletrônica de varredura (MEV), Espectroscopia de fotoelétrons de raios-X (XPS), Infravermelho com Transformada de Fourier (FTIR) de reflexão total atenuada (ATR), medidas da área de espalhamento do líquido e arraste vertical. Onde foi caracterizado o aumento e diminuição da molhabilidade das amostras tratadas por plasma bem como as variáveis que contribuíram para tal efeito. O tratamento das amostras de PLA com O2 + CH4 apresenta comportamento hidrofílico no lado tratado com O2, apresentando aumento de rugosidade e grupos funcionais e no lado tratado com CH4, apresentando a formação de um filme polimérico formado sobre a superfície da amostra. O tratamento com N2 + CH4 apresenta comportamento hidrofóbico, porém com variações no fluxo do CH4 tem-se um controle da molhabilidade na superfície das amostras, podendo ir de hidrofóbico a hidrofílico, neste tratamento as amostras apresentaram pequenas diferenças de molhabilidade entre os lados tratados com plasma de N2 e com plasma de CH4
Resumo:
The main goal of this work was to produce nanosized ceramic materials of the family of the tungstates (tungstates of cerium and strontium), and test them for their catalytic activity in processes involving the transformation of methane (CH4). The methodology used for the synthesis of the ceramic powders involved the complexation combining EDTA-citrate. The materials characterization was performed using simple and differential thermogravimetry, x-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy (EDS). The microstructure analysis was performed using the refinement by the Rietveld method, and the crystallite size and distribution of the materials was elucidate by the Scherrer and Williamson-Hall methods. The conditions of the synthesis process for the three envisaged materials (SrWO4, SrWO4 using tungsten oxide concentrate as raw material, and Ce2(WO4)3) were adjusted to obtain a single phase crystalline material. The catalytic tests were carried out in the presence of methane and synthetic air, which is composed of 21% O2 and 79% N2. The analysis of the conversion of the reaction was done with the aid of an fourier transform infrared device (FTIR). The analysis showed that, structurally, the SrWO4 produced using raw materials of high and poor purity (99% and 92%, respectively) are similar. The ideal parameters of calcination, in the tested range, are temperature of 1000 °C and time of calcination 5 hours. For the Ce2(WO4)3, the ideal calcination time and are temperature 15 hours and 1000°C, respectively. The Williamson-Hall method provided two different distributions for the crystallite size of each material, whose values ranged between the nanometer and micrometer scales. According to method of Scherrer, all materials produced were composed of nanometric crystallites. The analyses of transmission electron microscopy confirmed the results obtained from the Williamson- Hall method for the crystallite size. The EDS showed an atomic composition for the metals in the SrWO4 that was different of the theoretical composition. With respect to the catalytic tests, all materials were found to be catalytically active, but the reaction process should be further studied and optimized.
Resumo:
One of the main goals of CoRoT Natal Team is the determination of rotation period for thousand of stars, a fundamental parameter for the study of stellar evolutionary histories. In order to estimate the rotation period of stars and to understand the associated uncertainties resulting, for example, from discontinuities in the curves and (or) low signal-to-noise ratio, we have compared three different methods for light curves treatment. These methods were applied to many light curves with different characteristics. First, a Visual Analysis was undertaken for each light curve, giving a general perspective on the different phenomena reflected in the curves. The results obtained by this method regarding the rotation period of the star, the presence of spots, or the star nature (binary system or other) were then compared with those obtained by two accurate methods: the CLEANest method, based on the DCDFT (Date Compensated Discrete Fourier Transform), and the Wavelet method, based on the Wavelet Transform. Our results show that all three methods have similar levels of accuracy and can complement each other. Nevertheless, the Wavelet method gives more information about the star, from the wavelet map, showing the variations of frequencies over time in the signal. Finally, we discuss the limitations of these methods, the efficiency to give us informations about the star and the development of tools to integrate different methods into a single analysis
Resumo:
We analyzed the quality of raw milk from eight dairy farms in Rio Grande do Norte stored in a cooling tank , in order to evaluate methods for determining somatic cell counts (SCC). The Somaticell® kit and a portable Direct Cell Counter (DCC) were compared with each other and with the MilkoScanTM FT+ (FOSS Denmark), which uses Fourier Transform Infrared (FTIR) spectroscopy). Direct cell counter data were processed for somatic cell scores (log-transformed somatic cell count) and analyzed with the SAS®, statistical package , Statistical Analysis System, (SAS, INSTITUTE, 1998). Comparison of means and correlation of somatic cell scores were conducted using Pearson s correlation coefficient and the Tukey Test at 1 %. No significant difference was observed for comparison of means. The correlation between somatic cell scores was significant, that is, 0.907 and 0.876 between the MilkoScanTM FT+ and the Somaticell® kit and Direct Cell Count (DCC) respectively, and 0.943 between the Somaticell® kit and Direct Cell Count (DCC). The methods can be recommended for monitoring the quality of raw milk kept in a cooling tank in the production unit
Resumo:
We have investigated a high-resolution Fourier transform (FT) absorption spectrum of the (CH3OH)-C-13 isotopomer of methanol from 400 to 950 cm(-1) with the Ritz program. We present the assignments of 7160 transitions, 3021 of which belong to Asymmetry, and 4139 to E-symmetry. These transitions occur between states labeled by K quantum numbers up to 14, and by torsional quantum numbers n up to 4. The Ritz program evaluated the energies of the 4684 involved levels with an accuracy of the order of 10(-4) cm(-1). All of the assigned lines correspond to transitions involving torsionally excited levels within the ground small-amplitude vibrational state. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Due to environmental restrictions around the world, clean catalytic technology are of fundamental importance in the petrochemical industry and refineries. Creating the face of this a great interest in replacing the liquid acids for solid acids, so as molecular sieves have been extensively studied in reactions involving the acid catalysis to produce chemical substances with a high potential of quality. Being the activity of the catalysts involved in the reaction attributed to the acid character of them involved for the Lewis and Brönsted acid sites. Based on this context, this study aimed to prepare catalysts acids using a molecular sieve silicoalumino-phosphate (SAPO-11) synthesized in hidrotermical conditions and sulphated with sulphuric acid at different concentrations, using to it the method of controlled impregnating. The samples resulting from this process were characterized by x-ray difratometry (DRX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG-DTG) and determination of total acidity (by n-butilamin adsorption). The results show that the synthesis method used was efficient in the formation of AEL structure of SAPO-11 and when being incorporated the sulfate groups in this structure the acidity of the material was increased, pointing out that to very high concentrations of acid there is a trend of decrease the main peaks that form the structure. Finally they were tested catalytictly by the reaction model of conversion of m-xylene which showed favorable results of conversion for this catalyst, showing to be more selective of cracking products than isomerization, as expected, in order that for the o-xylene selectivity there was no positive change when to sulfate a sample of SAPO-11, while for light gases of C1-C4 this selectivity was remarkably observed