984 resultados para Tire Shear Force.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper modifies and uses the semiparametric methods of Ichimura and Lee (1991) on standard cross-section data to decompose the effect of disability on labor force participation into a demand and a supply effect. It shows that straightforward use of Ichimura and Lee leads to meaningless results while imposing monotonicity on the unknown function leads to substantial results. The paper finds that supply effects dominate the demand effects of disability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To assess the impact of relaxed asthma recruitment standards adopted by the Australian Defence Force (ADF) in 2007. Methods A retrospective audit was conducted on clinical and administrative data for recruits, with and without mild asthma, in their first year of service. Results There was no evidence that mild asthmatics experienced worse outcomes than nonasthmatic recruits. Mild asthmatics had fewer illnesses and restricted duty days and were less costly compared to other recruits. There was no difference in the rate of discharge (attrition) between those with and without mild asthma. Conclusions The revised recruitment standards for asthma in the ADF have not resulted in unanticipated medical or administrative costs to the organisation. Health and administrative outcomes differed little between mild asthmatics and non-asthmatic recruits in their first twelve months of service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we study the azimuthal shear deformations in a compressible Isotropic elastic material. This class of deformations involves an azimuthal displacement as a function of the radial and axial coordinates. The equilibrium equations are formulated in terms of the Cauchy-Green strain tensors, which form an overdetermined system of partial differential equations for which solutions do not exist in general. By means of a Legendre transformation, necessary and sufficient conditions for the material to support this deformation are obtained explicitly, in the sense that every solution to the azimuthal equilibrium equation will satisfy the remaining two equations. Additionally, we show how these conditions are sufficient to support all currently known deformations that locally reduce to simple shear. These conditions are then expressed both in terms of the invariants of the Cauchy-Green strain and stretch tensors. Several classes of strain energy functions for which this deformation can be supported are studied. For certain boundary conditions, exact solutions to the equilibrium equations are obtained. © 2005 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the combined azimuthal and axial shear of a compressible isotropic elastic circular cylindrical tube of finite extent, otherwise referred to as helical shear (which is an isochoric deformation). The equilibrium equations are formulated in terms of the principal stretches, and explicit necessary and sufficient conditions on the strain-energy function for the material to support this deformation are obtained and compared with those obtained previously for this problem. Several classes of strain-energy functions are derived and in some general cases complete solutions of the equilibrium equations are obtained. Existing results are recovered as special cases and some new results for the strain-energy functions derived are determined and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This method will allow the development of optimum sections by choosing appropriate combinations of web and flange plate widths and thicknesses. RHFCBs can be commonly used as flexural members in buildings. Many experimental and numerical studies have been carried out in the past to investigate the shear behaviour of lipped channel beams. However, no research has been undertaken on the shear behaviour of rivet fastened RHFCBs. Therefore a detailed experimental study involving 19 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental results with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Appropriate improvements have been proposed for the design rules of shear strength of rivet fastened RHFCBs within the Direct Strength Method format. This paper presents the details of this study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to determine the strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes, in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of these single cells at four different strain-rates. These results were then employed in inverse finite element analysis (FEA) using Modified Standard neo-Hookean Solid (MSnHS) idealization of these cells to determine their mechanical properties. In addition, a FEA model with a newly developed spring element was employed to accurately simulate AFM evaluation in this study. We report that both cytoskeleton (CSK) and intracellular fluid govern the strain-rate-dependent mechanical property of living cells whereas intracellular fluid plays a predominant role on fixed cells’ behavior. In addition, through the comparisons, it can be concluded that osteocytes are stiffer than chondrocytes at all strain-rates tested indicating that the cells could be the biomarker of their tissue origin. Finally, we report that MSnHS is able to capture the strain-rate-dependent mechanical behavior of osteocyte and chondrocyte for both living and fixed cells. Therefore, we concluded that the MSnHS is a good model for exploration of mechanical deformation responses of single osteocytes and chondrocytes. This study could open a new avenue for analysis of mechanical behavior of osteocytes and chondrocytes as well as other similar types of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed high strength steel members are increasingly used as primary load bearing components in low rise buildings. Lipped channel beam (LCB) is one of the most commonly used flexural members in these applications. In this research an experimental study was undertaken to investigate the shear behaviour and strengths of LCB sections. Simply supported test specimens of back to back LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. The ultimate shear capacity results obtained from the tests were compared with the predictions from the current design rules in Australian/NewZealand and American cold-formed steel design standards. This comparison showed that these shear design rules are very conservative as they did not include the post-buckling strength observed in the shear tests and the higher shear buckling coefficient due to the additional fixity along the web-flange juncture. Improved shear design equations are proposed in this paper by including the above beneficial effects. Suitable lower bound design rules were also developed under the direct strength method format. This paper presents the details of this experimental study and the results including the improved design rules for the shear capacity of LCBs. It also includes the details of tests of LCBs subject to combined shear and flange distortion, and combined bending and shear actions, and proposes suitable design rules to predict the capacities in these cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear capacities are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of LCBs. Hence detailed experimental studies were undertaken to investigate the behaviour and strength of LCBs with stiffened web openings subject to shear, and combined bending and shear actions. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Numerical studies were also undertaken to investigate the strength of LCBs with stiffened web openings. Finite element models of LCBs with stiffened web openings under shear, combined bending and shear actions were developed to simulate the behaviour of tested LCBs. The developed models were then validated by comparing their results with experimental results and used in further studies. Both experimental and finite element analysis results showed that the stiffening arrangements recommended by past research and available design guidelines are not adequate to restore the original shear strengths of LCBs. Therefore new stiffener arrangements were proposed based on screw fastened plate stiffeners. This paper presents the details of this research study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between a model drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from dry powder inhaler (DPI) formulations. Model silica probes of approximately 4 lm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres pre-attached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/ hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The plantar heel pad is a specialized fibroadipose tissue that attenuates and, in part, dissipates the impact energy associated with heel strike. Although near maximal deformation of the heel pad has been shown during running, in vivo measurement of the deformation and structural properties of the heel pad during walking remains largely unexplored. This study employed a fluoroscope, synchronized with a pressure platform, to obtain force–deformation data for the heel pad during walking. Methods: Dynamic lateral foot radiographs were acquired from 6 male and 10 female adults (age, 45 ± 10 yrs; height, 1.66 ± 0.10 m; and weight, 80.7 ± 10.8 kg), while walking barefoot at preferred speeds. The inferior aspect of the calcaneus was digitized and the sagittal thickness and deformation of the heel pad relative to the support surface calculated. Simultaneous measurement of the peak force beneath the heel was used to estimate the principal structural properties of the heel pad. Results: Transient loading profiles associated with walking induced rapidly changing deformation rates in the heel pad and resulted in irregular load–deformation curves. The initial stiffness (32 ± 11 N.mm-1) of the heel pad was an order of magnitude lower than its final stiffness (212 ± 125 N.mm-1) and on average, only 1.0 J of energy was dissipated by the heel pad with each step during walking. Peak deformation (10.3 mm) approached that predicted for the limit of pain tolerance (10.7 mm). Conclusion: These findings suggest the heel pad operates close to its pain threshold even at speeds encountered during barefoot walking and provides insight as to why barefoot runners may adopt ‘forefoot’ strike patterns that minimize heel loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study on controlling methods for six-legged robots. The study is based on mathematical modeling and simulation. A new joint controller is proposed and tested in simulation that uses joint angles and leg reaction force as inputs to generate a torque, and a method to optimise this controller is formulated and validated. Simulation shows that hexapod can walk on flat ground based on PID controllers with just four target configurations and a set of leg coordination rules, which provided the basis for the design of the new controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Can the mining boom be blamed for the rising rates of sexually transmitted infections (STIs) in some states? The Australian Medical Association thinks so, with its Queensland president Dr Richard Kidd attributing rising rates of gonorrhoea, syphilis and chlamydia in Queensland and Western Australia to bored and cashed-up miners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion receptors play a central role in sensing and integrating signals provided by the cellular environment. Thus, understanding adhesive interactions at the cell-biomaterial interface is essential to improve the design of implants that should emulate certain characteristics of the cell's natural environment. Numerous cell adhesion assays have been developed; among these, atomic force microscopy-based single-cell force spectroscopy (AFM-SCFS) provides a versatile tool to quantify cell adhesion at physiological conditions. Here we discuss how AFM-SCFS can be used to quantify the adhesion of living cells to biomaterials and give examples of using AFM-SCFS in tissue engineering and regenerative medicine. We anticipate that in the near future, AFM-SCFS will be established in the biomaterial field as an important technique to quantify cell-biomaterial interactions and thereby will contribute to the optimization of implants, scaffolds, and medical devices.