461 resultados para Théorème de Bayes
Resumo:
Cette thèse est une collection de trois articles en macroéconomie et finances publiques. Elle développe des modèles d'Equilibre Général Dynamique et Stochastique pour analyser les implications macroéconomiques des politiques d'imposition des entreprises en présence de marchés financiers imparfaits. Le premier chapitre analyse les mécanismes de transmission à l'économie, des effets d'un ré-échelonnement de l'impôt sur le profit des entreprises. Dans une économie constituée d'un gouvernement, d'une firme représentative et d'un ménage représentatif, j'élabore un théorème de l'équivalence ricardienne avec l'impôt sur le profit des entreprises. Plus particulièrement, j'établis que si les marchés financiers sont parfaits, un ré-échelonnement de l'impôt sur le profit des entreprises qui ne change pas la valeur présente de l'impôt total auquel l'entreprise est assujettie sur toute sa durée de vie n'a aucun effet réel sur l'économie si l'état utilise un impôt forfaitaire. Ensuite, en présence de marchés financiers imparfaits, je montre qu'une une baisse temporaire de l'impôt forfaitaire sur le profit des entreprises stimule l'investissement parce qu'il réduit temporairement le coût marginal de l'investissement. Enfin, mes résultats indiquent que si l'impôt est proportionnel au profit des entreprises, l'anticipation de taxes élevées dans le futur réduit le rendement espéré de l'investissement et atténue la stimulation de l'investissement engendrée par la réduction d'impôt. Le deuxième chapitre est écrit en collaboration avec Rui Castro. Dans cet article, nous avons quantifié les effets sur les décisions individuelles d'investis-sement et de production des entreprises ainsi que sur les agrégats macroéconomiques, d'une baisse temporaire de l'impôt sur le profit des entreprises en présence de marchés financiers imparfaits. Dans un modèle où les entreprises sont sujettes à des chocs de productivité idiosyncratiques, nous avons d'abord établi que le rationnement de crédit affecte plus les petites (jeunes) entreprises que les grandes entreprises. Pour des entreprises de même taille, les entreprises les plus productives sont celles qui souffrent le plus du manque de liquidité résultant des imperfections du marché financier. Ensuite, nous montré que pour une baisse de 1 dollar du revenu de l'impôt, l'investissement et la production augmentent respectivement de 26 et 3,5 centimes. L'effet cumulatif indique une augmentation de l'investissement et de la production agrégés respectivement de 4,6 et 7,2 centimes. Au niveau individuel, nos résultats indiquent que la politique stimule l'investissement des petites entreprises, initialement en manque de liquidité, alors qu'elle réduit l'investissement des grandes entreprises, initialement non contraintes. Le troisième chapitre est consacré à l'analyse des effets de la réforme de l'imposition des revenus d'entreprise proposée par le Trésor américain en 1992. La proposition de réforme recommande l'élimination des impôts sur les dividendes et les gains en capital et l'imposition d'une seule taxe sur le revenu des entreprises. Pour ce faire, j'ai eu recours à un modèle dynamique stochastique d'équilibre général avec marchés financiers imparfaits dans lequel les entreprises sont sujettes à des chocs idiosyncratiques de productivité. Les résultats indiquent que l'abolition des impôts sur les dividendes et les gains en capital réduisent les distorsions dans les choix d'investissement des entreprises, stimule l'investissement et entraîne une meilleure allocation du capital. Mais pour être financièrement soutenable, la réforme nécessite un relèvement du taux de l'impôt sur le profit des entreprises de 34\% à 42\%. Cette hausse du taux d'imposition décourage l'accumulation du capital. En somme, la réforme engendre une baisse de l'accumulation du capital et de la production respectivement de 8\% et 1\%. Néanmoins, elle améliore l'allocation du capital de 20\%, engendrant des gains de productivité de 1.41\% et une modeste augmentation du bien être des consommateurs.
Resumo:
"This report is based on Teresa Bayes' and Sandra Hough's masters theses ... "--Pref.
Resumo:
Mode of access: Internet.
Resumo:
The quality of reporting of studies of diagnostic accuracy is less than optimal. Complete and accurate reporting is necessary to enable readers to assess the potential for bias in the study and to evaluate the generalisability of the results. A group of scientists and editors has developed the STARD (Standards for Reporting of Diagnostic Accuracy) statement to improve the reporting the quality of reporting of studies of diagnostic accuracy. The statement consists of a checklist of 25 items and flow diagram that authors can use to ensure that all relevant information is present. This explanatory document aims to facilitate the use, understanding and dissemination of the checklist. The document contains a clarification of the meaning, rationale and optimal use of each item on the checklist, as well as a short summary of the available evidence on bias and applicability. The STARD statement, checklist, flowchart and this explanation and elaboration document should be useful resources to improve reporting of diagnostic accuracy studies. Complete and informative reporting can only lead to better decisions in healthcare.
Resumo:
Euastacus crayfish are endemic to freshwater ecosystems of the eastern coast of Australia. While recent evolutionary studies have focused on a few of these species, here we provide a comprehensive phylogenetic estimate of relationships among the species within the genus. We sequenced three mitochondrial gene regions (COI, 16S, and 12S) and one nuclear region (28S) from 40 species of the genus Euastacus, as well as one undescribed species. Using these data, we estimated the phylogenetic relationships within the genus using maximum-likelihood, parsimony, and Bayesian Markov Chain Monte Carlo analyses. Using Bayes factors to test different model hypotheses, we found that the best phylogeny supports monophyletic groupings of all but two recognized species and suggests a widespread ancestor that diverged by vicariance. We also show that Eitastacus and Astacopsis are most likely monophyletic sister genera. We use the resulting phylogeny as a framework to test biogeographic hypotheses relating to the diversification of the genus. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local false discovery rate is provided for each gene, and it can be implemented so that the implied global false discovery rate is bounded as with the Benjamini-Hochberg methodology based on tail areas. The latter procedure is too conservative, unless it is modified according to the prior probability that a gene is not differentially expressed. An attractive feature of the mixture model approach is that it provides a framework for the estimation of this probability and its subsequent use in forming a decision rule. The rule can also be formed to take the false negative rate into account.
Resumo:
Motivation: An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. Results: By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
Resumo:
In this paper we demonstrate that it is possible to gradually improve the performance of support vector machine (SVM) classifiers by using a genetic algorithm to select a sequence of training subsets from the available data. Performance improvement is possible because the SVM solution generally lies some distance away from the Bayes optimal in the space of learning parameters. We illustrate performance improvements on a number of benchmark data sets.
Resumo:
A novel approach, based on statistical mechanics, to analyze typical performance of optimum code-division multiple-access (CDMA) multiuser detectors is reviewed. A `black-box' view ot the basic CDMA channel is introduced, based on which the CDMA multiuser detection problem is regarded as a `learning-from-examples' problem of the `binary linear perceptron' in the neural network literature. Adopting Bayes framework, analysis of the performance of the optimum CDMA multiuser detectors is reduced to evaluation of the average of the cumulant generating function of a relevant posterior distribution. The evaluation of the average cumulant generating function is done, based on formal analogy with a similar calculation appearing in the spin glass theory in statistical mechanics, by making use of the replica method, a method developed in the spin glass theory.
Resumo:
This paper, addresses the problem of novelty detection in the case that the observed data is a mixture of a known 'background' process contaminated with an unknown other process, which generates the outliers, or novel observations. The framework we describe here is quite general, employing univariate classification with incomplete information, based on knowledge of the distribution (the 'probability density function', 'pdf') of the data generated by the 'background' process. The relative proportion of this 'background' component (the 'prior' 'background' 'probability), the 'pdf' and the 'prior' probabilities of all other components are all assumed unknown. The main contribution is a new classification scheme that identifies the maximum proportion of observed data following the known 'background' distribution. The method exploits the Kolmogorov-Smirnov test to estimate the proportions, and afterwards data are Bayes optimally separated. Results, demonstrated with synthetic data, show that this approach can produce more reliable results than a standard novelty detection scheme. The classification algorithm is then applied to the problem of identifying outliers in the SIC2004 data set, in order to detect the radioactive release simulated in the 'oker' data set. We propose this method as a reliable means of novelty detection in the emergency situation which can also be used to identify outliers prior to the application of a more general automatic mapping algorithm. © Springer-Verlag 2007.
Resumo:
This work introduces a new variational Bayes data assimilation method for the stochastic estimation of precipitation dynamics using radar observations for short term probabilistic forecasting (nowcasting). A previously developed spatial rainfall model based on the decomposition of the observed precipitation field using a basis function expansion captures the precipitation intensity from radar images as a set of ‘rain cells’. The prior distributions for the basis function parameters are carefully chosen to have a conjugate structure for the precipitation field model to allow a novel variational Bayes method to be applied to estimate the posterior distributions in closed form, based on solving an optimisation problem, in a spirit similar to 3D VAR analysis, but seeking approximations to the posterior distribution rather than simply the most probable state. A hierarchical Kalman filter is used to estimate the advection field based on the assimilated precipitation fields at two times. The model is applied to tracking precipitation dynamics in a realistic setting, using UK Met Office radar data from both a summer convective event and a winter frontal event. The performance of the model is assessed both traditionally and using probabilistic measures of fit based on ROC curves. The model is shown to provide very good assimilation characteristics, and promising forecast skill. Improvements to the forecasting scheme are discussed
Resumo:
Operators can become confused while diagnosing faults in process plant while in operation. This may prevent remedial actions being taken before hazardous consequences can occur. The work in this thesis proposes a method to aid plant operators in systematically finding the causes of any fault in the process plant. A computer aided fault diagnosis package has been developed for use on the widely available IBM PC compatible microcomputer. The program displays a coloured diagram of a fault tree on the VDU of the microcomputer, so that the operator can see the link between the fault and its causes. The consequences of the fault and the causes of the fault are also shown to provide a warning of what may happen if the fault is not remedied. The cause and effect data needed by the package are obtained from a hazard and operability (HAZOP) study on the process plant. The result of the HAZOP study is recorded as cause and symptom equations which are translated into a data structure and stored in the computer as a file for the package to access. Probability values are assigned to the events that constitute the basic causes of any deviation. From these probability values, the a priori probabilities of occurrence of other events are evaluated. A top-down recursive algorithm, called TDRA, for evaluating the probability of every event in a fault tree has been developed. From the a priori probabilities, the conditional probabilities of the causes of the fault are then evaluated using Bayes' conditional probability theorem. The posteriori probability values could then be used by the operators to check in an orderly manner the cause of the fault. The package has been tested using the results of a HAZOP study on a pilot distillation plant. The results from the test show how easy it is to trace the chain of events that leads to the primary cause of a fault. This method could be applied in a real process environment.
Resumo:
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.
Resumo:
This paper aims to identify the communication goal(s) of a user's information-seeking query out of a finite set of within-domain goals in natural language queries. It proposes using Tree-Augmented Naive Bayes networks (TANs) for goal detection. The problem is formulated as N binary decisions, and each is performed by a TAN. Comparative study has been carried out to compare the performance with Naive Bayes, fully-connected TANs, and multi-layer neural networks. Experimental results show that TANs consistently give better results when tested on the ATIS and DARPA Communicator corpora.
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.