915 resultados para Supervised pattern recognition methods
Resumo:
Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.
Resumo:
O desenvolvimento de sistemas de localização pedestre com recurso a técnicas de dead reckoning tem mostrado ser uma área em expansão no mundo académico e não só. Existem algumas soluções criadas, no entanto, nem todas as soluções serão facilmente implementadas no mercado, quer seja pelo hardware caro, ou pelo sistema em si, que é desenvolvido tendo em conta um cenário em particular. INPERLYS é um sistema que visa apresentar uma solução de localização pedestre, independentemente do cenário, utilizando recursos que poderão ser facilmente usados. Trata-se de um sistema que utiliza uma técnica de dead reckonig para dar a localização do utilizador. Em cenários outdoor, um receptor GPS fornece a posição do utilizador, fornecendo uma posição absoluta ao sistema. Quando não é possível utilizar o GPS, recorre-se a um sensor MEMS e a uma bússola para se obter posições relativas à última posição válida do GPS. Para interligar todos os sensores foi utilizado o protocolo de comunicações sem fios ZigBee™. A escolha recaiu neste protocolo devido a factores como os seus baixos consumos e o seu baixo custo. Assim o sistema torna-se de uso fácil e confortável para o utilizador, ao contrário de sistemas similares desenvolvidos, que utilizam cabos para interligarem os diferentes componentes do sistema. O sensor MEMS do tipo acelerómetro tem a função de ler a aceleração horizontal, ao nível do pé. Esta aceleração será usada por um algoritmo de reconhecimento do padrão das acelerações para se detectar os passos dados. Após a detecção do passo, a aceleração máxima registada nesse passo é fornecida ao coordenador, para se obter o deslocamento efectuado. Foram efectuados alguns testes para se perceber a eficiência do INPERLYS. Os testes decorreram num percurso plano, efectuados a uma velocidade normal e com passadas normais. Verificou-se que, neste momento, o desempenho do sistema poderá ser melhorado, quer seja a nível de gestão das comunicações, quer a nível do reconhecimento do padrão da aceleração horizontal, essencial para se detectar os passos. No entanto o sistema é capaz de fornecer a posição através do GPS, quando é possível a sua utilização, e é capaz de fornecer a orientação do movimento.
Resumo:
Chpater in Book Proceedings with Peer Review Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Proceedings, Part II
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.
Resumo:
A classical application of biosignal analysis has been the psychophysiological detection of deception, also known as the polygraph test, which is currently a part of standard practices of law enforcement agencies and several other institutions worldwide. Although its validity is far from gathering consensus, the underlying psychophysiological principles are still an interesting add-on for more informal applications. In this paper we present an experimental off-the-person hardware setup, propose a set of feature extraction criteria and provide a comparison of two classification approaches, targeting the detection of deception in the context of a role-playing interactive multimedia environment. Our work is primarily targeted at recreational use in the context of a science exhibition, where the main goal is to present basic concepts related with knowledge discovery, biosignal analysis and psychophysiology in an educational way, using techniques that are simple enough to be understood by children of different ages. Nonetheless, this setting will also allow us to build a significant data corpus, annotated with ground-truth information, and collected with non-intrusive sensors, enabling more advanced research on the topic. Experimental results have shown interesting findings and provided useful guidelines for future work. Pattern Recognition
Resumo:
Liver steatosis is mainly a textural abnormality of the hepatic parenchyma due to fat accumulation on the hepatic vesicles. Today, the assessment is subjectively performed by visual inspection. Here a classifier based on features extracted from ultrasound (US) images is described for the automatic diagnostic of this phatology. The proposed algorithm estimates the original ultrasound radio-frequency (RF) envelope signal from which the noiseless anatomic information and the textural information encoded in the speckle noise is extracted. The features characterizing the textural information are the coefficients of the first order autoregressive model that describes the speckle field. A binary Bayesian classifier was implemented and the Bayes factor was calculated. The classification has revealed an overall accuracy of 100%. The Bayes factor could be helpful in the graphical display of the quantitative results for diagnosis purposes.
Resumo:
Constrained nonlinear optimization problems are usually solved using penalty or barrier methods combined with unconstrained optimization methods. Another alternative used to solve constrained nonlinear optimization problems is the lters method. Filters method, introduced by Fletcher and Ley er in 2002, have been widely used in several areas of constrained nonlinear optimization. These methods treat optimization problem as bi-objective attempts to minimize the objective function and a continuous function that aggregates the constraint violation functions. Audet and Dennis have presented the rst lters method for derivative-free nonlinear programming, based on pattern search methods. Motivated by this work we have de- veloped a new direct search method, based on simplex methods, for general constrained optimization, that combines the features of the simplex method and lters method. This work presents a new variant of these methods which combines the lters method with other direct search methods and are proposed some alternatives to aggregate the constraint violation functions.
Resumo:
In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity.
Resumo:
Many learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.
Resumo:
A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.
Resumo:
Na atualidade, está a emergir um novo paradigma de interação, designado por Natural User Interface (NUI) para reconhecimento de gestos produzidos com o corpo do utilizador. O dispositivo de interação Microsoft Kinect foi inicialmente concebido para controlo de videojogos, para a consola Xbox360. Este dispositivo demonstra ser uma aposta viável para explorar outras áreas, como a do apoio ao processo de ensino e de aprendizagem para crianças do ensino básico. O protótipo desenvolvido visa definir um modo de interação baseado no desenho de letras no ar, e realizar a interpretação dos símbolos desenhados, usando os reconhecedores de padrões Kernel Discriminant Analysis (KDA), Support Vector Machines (SVM) e $N. O desenvolvimento deste projeto baseou-se no estudo dos diferentes dispositivos NUI disponíveis no mercado, bibliotecas de desenvolvimento NUI para este tipo de dispositivos e algoritmos de reconhecimento de padrões. Com base nos dois elementos iniciais, foi possível obter uma visão mais concreta de qual o hardware e software disponíveis indicados à persecução do objetivo pretendido. O reconhecimento de padrões constitui um tema bastante extenso e complexo, de modo que foi necessária a seleção de um conjunto limitado deste tipo de algoritmos, realizando os respetivos testes por forma a determinar qual o que melhor se adequava ao objetivo pretendido. Aplicando as mesmas condições aos três algoritmos de reconhecimento de padrões permitiu avaliar as suas capacidades e determinar o $N como o que apresentou maior eficácia no reconhecimento. Por último, tentou-se averiguar a viabilidade do protótipo desenvolvido, tendo sido testado num universo de elementos de duas faixas etárias para determinar a capacidade de adaptação e aprendizagem destes dois grupos. Neste estudo, constatou-se um melhor desempenho inicial ao modo de interação do grupo de idade mais avançada. Contudo, o grupo mais jovem foi revelando uma evolutiva capacidade de adaptação a este modo de interação melhorando progressivamente os resultados.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
In the present paper we assess the performance of information-theoretic inspired risks functionals in multilayer perceptrons with reference to the two most popular ones, Mean Square Error and Cross-Entropy. The information-theoretic inspired risks, recently proposed, are: HS and HR2 are, respectively, the Shannon and quadratic Rényi entropies of the error; ZED is a risk reflecting the error density at zero errors; EXP is a generalized exponential risk, able to mimic a wide variety of risk functionals, including the information-thoeretic ones. The experiments were carried out with multilayer perceptrons on 35 public real-world datasets. All experiments were performed according to the same protocol. The statistical tests applied to the experimental results showed that the ubiquitous mean square error was the less interesting risk functional to be used by multilayer perceptrons. Namely, mean square error never achieved a significantly better classification performance than competing risks. Cross-entropy and EXP were the risks found by several tests to be significantly better than their competitors. Counts of significantly better and worse risks have also shown the usefulness of HS and HR2 for some datasets.