628 resultados para Styrene
Resumo:
The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) with a series of poly(ethylene oxide-co-propylene oxide) (EPO) has been studied. It was found that the critical copolymer composition for achieving miscibility with phenoxy around 60-degrees-C is about 22 mol % ethylene oxide (EO). Some blends undergo phase separation at elevated temperatures, but there is no maximum in the miscibility window. The mean-field approach has been used to describe this homopolymer/copolymer system. From the miscibility maps and the melting-point depression of the crystallizable component in the blends, the binary interaction energy densities, B(ij), have been calculated for all three pairs. The miscibility of phenoxy with EPO is considered to be caused mainly by the intermolecular hydrogen-bonding interactions between the hydroxyl groups of phenoxy and the ether oxygens of the EO units in the copolymers, while the intramolecular repulsion between EO and propylene oxide units in the copolymers contributes relatively little to the miscibility.
Resumo:
Polyoxypropylene glycol (PPG) (or castor oil) and toluene diisocyanate (TDI) were mixed, and the prepolymer polyurethane (PU) (I) was formed. Vinyl-terminated polyurethane (II) was prepared from (I), and hydroxyethyl acrylate, AB crosslinked polymers (ABCPs) were synthesized from (II) and vinyl monomers such as styrene, methyl methacrylate, vinyl acetate, etc. The dynamic mechanical properties and morphology of ABCPs were measured. The ABCPs based on PPG have double glass transition temperatures (T(g)) on the sigma-vs. temperature curves. They display a two-phase morphology with plastic components forming the continous phase and PU-rich domains forming the separated phase on the electron micrographs. Irregular shapes and a highly polydisperse distribution of PU-rich domain sizes were observed. The crosslink density of ABCPs has a notable effect on the morphology and properties. The average diameter of the PU-rich domains depends on the molecular weight of prepolymer PPG. The highly crosslinked structures will produce large numbers of very small domains. ABCPs based on castor oil show a single T(g) relaxation on the dynamic mechanical spectra. The compatibility between the two components is much better in ABCPs based on castor oil than in those based on PPG, because there is a high crosslink density in the former. Comparison of the dynamic mechanical spectra of ABCP and interpenetrating networks (IPN) based on castor oil with similar crosslink density and composition imply that the two components in ABCP are compatible whereas microphase separation occurs in IPN. An improvement in the compatibility is achieved by the crosslinking between the two networks.
Resumo:
A novel comb-like amphiphilic polymer, poly (2-acrylamidohexadecylsulfonic acid) (PAMC16S), was synthesized by free radical polymerization of the corresponding amphiphilic monomer in 1,4-dioxane-water mixed solvents. Depending on the ratio of water/dioxane in the solvent, the reaction proceeded by either precipitation polymerization or micellar polymerization. The molecular weight of the polymer obtained under similar conditions decreased and subsequently increased with the increase of water content in the mixed solvent. The polyion nature of PAMC16S was confirmed by viscosity data of ethanolic solutions. In addition, the polymer was characterized by solubility, IR, TG and wide angle X-ray diffraction methods.
Resumo:
The effect of micelle on crystallization behaviour of dilute poly(methyl methacrylate-b-tetrahydrofuran) diblock copolymer/tetrahydrofuran homopolymer, dilute poly (ethylene-b-styrene-b-ethylene) triblock copolymer/ethylene homopolymer solutions has been studied. The results show that with the structural teansitions from spherical to nonspherical micelle in the blends, great changes in the nucleation and spherulite morphologies take place.
Resumo:
The sequence distribution of the monomeric units in the styrene-acrylic acid copolymer has been obtained by calculation. The probability of long sequences of styrene increases with an increase in the content of the monomer in the copolymer. The highest distribution of short sequences of styrene takes place for the copolymer containing equimolecular amounts of styrene and acrylic acid. The copolymer which has this latter structure is inadequate for the synthesis of highly active supported complexes. When the distributions of long and short sequences of styrene are approximately equal, the activity of the Nd and Fe prepared polymer complexes is higher.
Resumo:
Acetonitrile is a weakly donating ligand. The cationic compounds of CH_3CN-coordinated transition metal are versatile homogeneous catalysts for the polymerization and isomerization of olefins and cycloolefins. The cationic compound of lanthanide[Eu(CH_3·CN)_3(BF_4)_3]_n was prepared from the oxidation of Eu with NOBF_4 in CH_3CN by Thomas in 1986. It was found that [Eu(CH_3CN)_3(BF_4)_3]_n can catalyze the polymerization of styrene cyclohexadiene and other olefins. However, there is no information about...
Resumo:
Capillary gas chromatographic enantiomer separation of some polar compounds, including alpha-phenylethylamine, styrene oxide, pyrethroid insecticides and other carboxylates, was investigated on modified cyclodextrin (CD) chiral stationary phases. The chiral stationary phases studied included permethylated beta-CD (PMBCD), heptakis (2,6-di-O-butyl-3-O-butyryl)-beta-CD (DBBBCD), heptakis (2,6-di-O-nonyl-3-O-trifluoroacetyl)-beta-CD (DNTBCD), the mixture of PMBCD and DBBBCD, and the mixture of PMBCD and DNTBCD. On the mixed chiral stationary phases containing the mixtures of derivatized cyclodextrins, enantiomer separation was improved significantly for some compounds as compared to the single cyclodextrin derivative chiral stationary phases, and synergistic effects were observed for some compounds on the mixed cyclodextrin derivative chiral stationary phases.
Resumo:
Ti-substituted mesoporous SBA-15 (Ti-SBA-15) materials have been synthesized by using a new approach in which the hydrolysis of the silicon precursor (tetramethoxysilane, TMOS) is accelerated by fluoride. These materials were characterized by powder X-ray diffraction patterns (XRD), X-ray fluorescence spectroscopy (Y-RF), N-2 sorption isotherms, diffuse-reflectance UV-visible (UV-vis) and UV-Raman spectroscopy, Si-29 MAS NMR, and the catalytic epoxidation reaction of styrene. Experiments show that Ti-SBA-15 samples of high quality can be obtained under the following conditions: F/Si greater than or equal to 0.03 (molar ratio), pH less than or equal to 1.0, aging temperature less than or equal to 80 degreesC, and Ti/Si less than or equal to 0.01. It was found that the hydrolysis rate of TMOS was remarkably accelerated by fluoride, which was suggested to play the main role in the formation of Ti-SBA-15 materials of high quality. There is no stoichiometric incorporation of Ti, and the Ti contents that are obtained are quite low in the case of the approach that is proposed. The calcined Ti-SBA-15 materials show highly catalytic activity in the epoxidation of styrene.
Resumo:
Titanocene complexes combined with nanometer-size sodium hydride are extremely active and selective catalysts for the hydrogenation of terminal alkenes under normal pressure. The initial turnover frequencies (TOFinitial) may reach 100-300 s(-1) in the hydrogenation of 1-hexene. The highest catalytic efficiency turnover (TO) reaches 1.5 x 10(5) in 2 h for the hydrogenation of styrene. These catalytic systems exhibit specific selectivity toward alkene substrates. Only terminal alkenes can be hydrogenated. No isomerization of carbon-carbon double bonds occurs during hydrogenation. A suitable substituent on the cyclopentadienyl ring of titanocene and the use of nanometric sodium hydride are key factors in the high efficiency of these catalytic systems. (C) 2002 Elsevier Science.
Resumo:
The variation of specific surface area and chemical reactivity of nano-KH particles treated at different temperatures has been studied, The BET surface area of nano-KH decreases with the increase of heat treatment temperature, while the chemical reactivity per unit surface increases steadily. These results indicate that the state of KH surface is changed after heat treatment. Large specific surface area of nano-KH is a major factor for its high chemical reactivity, nevertheless, the surface in an activated state with high surface energy is also an important factor for its high chemical reactivity. Nano-KH alone can polymerize styrene rapidly with the formation of polystyrene.
Resumo:
Inexpensive and permanently modified poly(methyl methacrylate)(PMMA) microchips were fabricated by an injection-molding process. A novel sealing method for plastic microchips at room temperature was introduced. Run-to-run and chip-to-chip reproducibility was good, with relative standard deviation values between 1-3% for the run-to-run and less than 2.1% for the chip-to-chip comparisons. Acrylonitrile-butadiene-styrene (ABS) was used as an additive in PMMA substrates. The proportions of PMMA and ABS were optimized. ABS may be considered as a modifier, which obviously improved some characteristics of the microchip, such as the hydrophilicity and the electro-osmotic flow (EOF). The detection limit of Rhodamine 6G dye for the modified microchip on the home-made microchip analyzer showed a dramatic 100-fold improvement over that for the unmodified PMMA chip. A detection limit of the order of 10(-20) mole has been achieved for each injected phiX-174/HaeIII DNA fragment with the baseline separation between 271 and 281 bp, and fast separation of 11 DNA restriction fragments within 180 seconds. Analysis of a PCR product from the tobacco ACT gene was performed on the modified microchip as an application example.
Resumo:
Three chiral Mn(salen) complexes were immobilized into different mesoporous material via phenoxy group by a simplified method and they show high activity and enantioselectivity for asymmetric epoxidation of various substituted unfunctional olefins. The heterogeneous Mn(salen) catalysts show comparable ee values for asymmetric epoxidation of styrene and 6-cyano-2,2-dimethylchromene and much higher ee values for epoxidation of a-methylstyrene (heterogeneous 79.7% ee versus homogeneous 26.4% ee) and cis-beta-methylstyrene (heterogeneous 94.9% ee versus homogeneous 25.3% ee for cis-epoxide) than the homogeneous catalysts. These heterogeneous catalysts also remarkably alter the cis/trans ratio of epoxides for asymmetric epoxidation of cis-beta-methylstyrene (heterogeneous 21 versus homogeneous 0.38). The axial tether group does not make a big effect on ee values and the increase in ee value and change in cis/trans ratio are mainly attributed to the axial immobilization mode and the support effect of heterogeneous catalysts. The catalysts keep constant ee values for the recycle tests of eight times for asymmetric epoxidation of a-methylstyrene. And several possibilities were proposed to elucidate the difference in ee values of heterogeneous catalysts from homogeneous catalysts. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The selective heterogeneous catalytic reduction of phenyl acetylene to styrene over palladium supported on calcium carbonate is reported in both an ionic liquid and a molecular solvent. By using a rotating disc reactor in conjunction with results from a stirred tank reactor it is possible, for the first time, to disentangle the mass transfer contributions in the ionic liquid system. For both heptane and 1-butyl-3-methyl imidazolium bis{(trifluoromethyl)sulfonyl}imide, the reaction in the rotating disc reactor is dominated by reaction in the entrained film on the disc compared with very limited reaction in the bulk liquid. The lower reaction rate obtained in the ionic liquid compared with the organic solvent is shown to be due to the slow transport of the hydrogen dissolved in the liquid. It is clear from the results presented herein that, although the hydrodynamics of similar reactors used for biological treatment of wastewater are well understood, on using a more viscous fluid and higher rotation speeds necessary for fine chemical catalysis these simple relationships breakdown.
Resumo:
The synthesis of [Rh-2(COD)(2)(dppm)(mu(2)-Cl)] BF4 (1) (COD) 1,5-cyclooctadiene, dppm) bis(diphenylphosphino) methane) from simple precursors is reported. This is a rare example of a dirhodium complex with an open [Rh-2(mu(2)-dppm)(mu(2)-Cl)] core. The complex has been used to affect the hydrogenation of styrene and benzo[b] thiophene with total selectivity and competitive rates of reaction. The recycling of the catalyst has been achieved by the entrapment of 1 in silica by a sol-gel method to produce a recyclable solid catalyst.
Resumo:
Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.