969 resultados para Stochastic Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flash floods are of major relevance in natural disaster management in the Mediterranean region. In many cases, the damaging effects of flash floods can be mitigated by adequate management of flood control reservoirs. This requires the development of suitable models for optimal operation of reservoirs. A probabilistic methodology for calibrating the parameters of a reservoir flood control model (RFCM) that takes into account the stochastic variability of flood events is presented. This study addresses the crucial problem of operating reservoirs during flood events, considering downstream river damages and dam failure risk as conflicting operation criteria. These two criteria are aggregated into a single objective of total expected damages from both the maximum released flows and stored volumes (overall risk index). For each selected parameter set the RFCM is run under a wide range of hydrologic loads (determined through Monte Carlo simulation). The optimal parameter set is obtained through the overall risk index (balanced solution) and then compared with other solutions of the Pareto front. The proposed methodology is implemented at three different reservoirs in the southeast of Spain. The results obtained show that the balanced solution offers a good compromise between the two main objectives of reservoir flood control management

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by these difficulties, Castillo et al. (2012) made some suggestions on how to build consistent stochastic models avoiding the selection of easy to use mathematical functions, which were replaced by those resulting from a set of properties to be satisfied by the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm that is applied to the estimation of modal parameters from system input and output data. The effectiveness of this structural identification method is evaluated through numerical simulation. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the simulated structure are estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates the modal parameters with precision in the presence of 20% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road accidents are a very relevant issue in many countries and macroeconomic models are very frequently applied by academia and administrations to reduce their frequency and consequences. The selection of explanatory variables and response transformation parameter within the Bayesian framework for the selection of the set of explanatory variables a TIM and 3IM (two input and three input models) procedures are proposed. The procedure also uses the DIC and pseudo -R2 goodness of fit criteria. The model to which the methodology is applied is a dynamic regression model with Box-Cox transformation (BCT) for the explanatory variables and autorgressive (AR) structure for the response. The initial set of 22 explanatory variables are identified. The effects of these factors on the fatal accident frequency in Spain, during 2000-2012, are estimated. The dependent variable is constructed considering the stochastic trend component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una estructura vibra con la suma de sus infinitos modos de vibración, definidos por sus parámetros modales (frecuencias naturales, formas modales y coeficientes de amortiguamiento). Estos parámetros se pueden identificar a través del Análisis Modal Operacional (OMA). Así, un equipo de investigación de la Universidad Politécnica de Madrid ha identificado las propiedades modales de un edificio de hormigón armado en Madrid con el método Identificación de los sub-espacios estocásticos (SSI). Para completar el estudio dinámico de este edificio, se ha desarrollado un modelo de elementos finitos (FE) de este edificio de 19 plantas. Este modelo se ha calibrado a partir de su comportamiento dinámico obtenido experimentalmente a través del OMA. Los objetivos de esta tesis son; (i) identificar la estructura con varios métodos de SSI y el uso de diferentes ventanas de tiempo de tal manera que se cuantifican incertidumbres de los parámetros modales debidos al proceso de estimación, (ii) desarrollar FEM de este edificio y calibrar este modelo a partir de su comportamiento dinámico, y (iii) valorar la bondad del modelo. Los parámetros modales utilizados en esta calibración han sido; espesor de las losas, densidades de los materiales, módulos de elasticidad, dimensiones de las columnas y las condiciones de contorno de la cimentación. Se ha visto que el modelo actualizado representa el comportamiento dinámico de la estructura con una buena precisión. Por lo tanto, este modelo puede utilizarse dentro de un sistema de monitorización estructural (SHM) y para la detección de daños. En el futuro, podrá estudiar la influencia de los agentes medioambientales, tales como la temperatura o el viento, en los parámetros modales. A structure vibrates according to the sum of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). These parameters can be identified through Operational Modal Analysis (OMA). Thus, a research team of the Technical University of Madrid has identified the modal properties of a reinforced-concrete-frame building in Madrid using the Stochastic Subspace Identification (SSI) method and a time domain technique for the OMA. To complete the dynamic study of this building, a finite element model (FE) of this 19-floor building has been developed throughout this thesis. This model has been updated from its dynamic behavior identified by the OMA. The objectives of this thesis are to; (i) identify the structure with several SSI methods and using different time blocks in such a way that uncertainties due to the modal parameter estimation are quantified, (ii) develop a FEM of this building and tune this model from its dynamic behavior, and (iii) Assess the quality of the model, the modal parameters used in this updating process have been; thickness of slabs, material densities, modulus of elasticity, column dimensions and foundation boundary conditions. It has been shown that the final updated model represents the structure with a very good accuracy. Thus, this model might be used within a structural health monitoring framework (SHM). The study of the influence of changing environmental factors (such as temperature or wind) on the model parameters might be considered as a future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been assumed that HIV-1 evolution is best described by deterministic evolutionary models because of the large population size. Recently, however, it was suggested that the effective population size (Ne) may be rather small, thereby allowing chance to influence evolution, a situation best described by a stochastic evolutionary model. To gain experimental evidence supporting one of the evolutionary models, we investigated whether the development of resistance to the protease inhibitor ritonavir affected the evolution of the env gene. Sequential serum samples from five patients treated with ritonavir were used for analysis of the protease gene and the V3 domain of the env gene. Multiple reverse transcription–PCR products were cloned, sequenced, and used to construct phylogenetic trees and to calculate the genetic variation and Ne. Genotypic resistance to ritonavir developed in all five patients, but each patient displayed a unique combination of mutations, indicating a stochastic element in the development of ritonavir resistance. Furthermore, development of resistance induced clear bottleneck effects in the env gene. The mean intrasample genetic variation, which ranged from 1.2% to 5.7% before treatment, decreased significantly (P < 0.025) during treatment. In agreement with these findings, Ne was estimated to be very small (500–15,000) compared with the total HIV-1 RNA copy number. This study combines three independent observations, strong population bottlenecking, small Ne, and selection of different combinations of protease-resistance mutations, all of which indicate that HIV-1 evolution is best described by a stochastic evolutionary model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor induced angiogenesis processes including the effect of stochastic motion and branching of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the tumor induced ingiogenic factor. The chemotactic force field depends on the flux of blood vessels through the angiogenic factor. We develop an existence and uniqueness theory for this system under natural assumptions on the initial data. The proof combines the construction of fundamental solutions for associated linearized problems with comparison principles, sharp estimates of the velocity integrals and compactness results for this type of kinetic and parabolic operators

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility (SV) components in order to develop the General Long Memory SV (GLMSV) model. We examine the statistical properties of the new model, suggest using the spectral likelihood estimation for long memory processes, and investigate the finite sample properties via Monte Carlo experiments. We apply the model to three exchange rate return series. Overall, the results of the out-of-sample forecasts show the adequacy of the new GLMSV model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of nonlinear parameter estimation techniques is now commonplace in ground water model calibration. However, there is still ample room for further development of these techniques in order to enable them to extract more information from calibration datasets, to more thoroughly explore the uncertainty associated with model predictions, and to make them easier to implement in various modeling contexts. This paper describes the use of pilot points as a methodology for spatial hydraulic property characterization. When used in conjunction with nonlinear parameter estimation software that incorporates advanced regularization functionality (such as PEST), use of pilot points can add a great deal of flexibility to the calibration process at the same time as it makes this process easier to implement. Pilot points can be used either as a substitute for zones of piecewise parameter uniformity, or in conjunction with such zones. In either case, they allow the disposition of areas of high and low hydraulic property value to be inferred through the calibration process, without the need for the modeler to guess the geometry of such areas prior to estimating the parameters that pertain to them. Pilot points and regularization can also be used as an adjunct to geostatistically based stochastic parameterization methods. Using the techniques described herein, a series of hydraulic property fields can be generated, all of which recognize the stochastic characterization of an area at the same time that they satisfy the constraints imposed on hydraulic property values by the need to ensure that model outputs match field measurements. Model predictions can then be made using all of these fields as a mechanism for exploring predictive uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improvements in seasonal climate forecasts have potential economic implications for international agriculture. A stochastic, dynamic simulation model of the international wheat economy is developed to estimate the potential effects of seasonal climate forecasts for various countries' wheat production, exports and world trade. Previous studies have generally ignored the stochastic and dynamic aspects of the effects associated with the use of climate forecasts. This study shows the importance of these aspects. In particular with free trade, the use of seasonal forecasts results in increased producer surplus across all exporting countries. In fact, producers appear to capture a large share of the economic surplus created by using the forecasts. Further, the stochastic dimensions suggest that while the expected long-run benefits of seasonal forecasts are positive, considerable year-to-year variation in the distribution of benefits between producers and consumers should be expected. The possibility exists for an economic measure to increase or decrease over a 20-year horizon, depending on the particular sequence of years.