991 resultados para Software defect prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. The genera Enterococcus, Staphylococcus and Streptococcus are recognized as important Gram-positive human pathogens. The aim of this study was to evaluate the performance of Vitek 2 in identifying Gram-positive cocci and their antimicrobial susceptibilities. Methods. One hundred four isolates were analyzed to determine the accuracy of the automated system for identifying the bacteria and their susceptibility to oxacillin and vancomycin. Results. The system correctly identified 77.9% and 97.1% of the isolates at the species and genus levels, respectively. Additionally, 81.8% of the Vitek 2 results agreed with the known antimicrobial susceptibility profiles. Conclusion. Vitek 2 correctly identified the commonly isolated strains; however, the limitations of the method may lead to ambiguous findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many conditions are associated with hyperglycemia in preterm neonates because they are very susceptible to changes in carbohydrate homeostasis. The purpose of this study was to evaluate the occurrence of hyperglycemia in preterm infants undergoing glucose infusion during the first week of life, and to enumerate the main variables predictive of hyperglycemia. This prospective study (during 1994) included 40 preterm neonates (gestational age <37 weeks); 511 determinations of glycemic status were made in these infants (average 12.8/infant), classified by gestational age, birth weight, glucose infusion rate and clinical status at the time of determination (based on clinical and laboratory parameters). The clinical status was classified as stable or unstable, as an indication of the stability or instability of the mechanisms governing glucose homeostasis at the time of determination of blood glucose; 59 episodes of hyperglycemia (11.5%) were identified. A case-control study was used (case = hyperglycemia; control = normoglycemia) to derive a model for predicting glycemia. The risk factors considered were gestational age (<=31 vs. >31 weeks), birth weight (<=1500 vs. >1500 g), glucose infusion rate (<=6 vs. >6 mg/kg/min) and clinical status (stable vs. unstable). Multivariate analysis by logistic regression gave the following mathematical model for predicting the probability of hyperglycemia: 1/exp{-3.1437 + 0.5819(GA) + 0.9234(GIR) + 1.0978(Clinical status)} The main predictive variables in our study, in increasing order of importance, were gestational age, glucose infusion rate and, the clinical status (stable or unstable) of the preterm newborn infant. The probability of hyperglycemia ranged from 4.1% to 36.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software Product Line (SPL) engineering aims at achieving efficient development of software products in a specific domain. New products are obtained via a process which entails creating a new configuration specifying the desired product’s features. This configuration must necessarily conform to a variability model, that describes the scope of the SPL, or else it is not viable. To ensure this, configuration tools are used that do not allow invalid configurations to be expressed. A different concern, however, is making sure that a product addresses the stakeholders’ needs as best as possible. The stakeholders may not be experts on the domain, so they may have unrealistic expectations. Also, the scope of the SPL is determined not only by the domain but also by limitations of the development platforms. It is therefore possible that the desired set of features goes beyond what is possible to currently create with the SPL. This means that configuration tools should provide support not only for creating valid products, but also for improving satisfaction of user concerns. We address this goal by providing a user-centric configuration process that offers suggestions during the configuration process, based on the use of soft constraints, and identifying and explaining potential conflicts that may arise. Suggestions help mitigating stakeholder uncertainty and poor domain knowledge, by helping them address well known and desirable domain-related concerns. On the other hand, automated conflict identification and explanation helps the stakeholders to understand the trade-offs required for realizing their vision, allowing informed resolution of conflicts. Additionally, we propose a prototype-based approach to configuration, that addresses the order-dependency issues by allowing the complete (or partial) specification of the features in a single step. A subsequent resolution process will then identify possible repairs, or trade-offs, that may be required for viabilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os estudos da satisfação e lealdade do cliente em ambiente Business-to-Business têm emergido devido ao interesse práctico e académico. Recorreu-se a um caso práctico de uma empresa de software internacional, ESRI, a operar em Portugal com modelo de negócio B2B e comportamento de compra extensivo. Desenvolveu-se um modelo estrutural com 11 variáveis latentes: lealdade; satisfação; imagem; atmosfera; cooperação; adaptação; processos; tecnologia; orientação ao cliente; competências; colaboradores e comunicação. Foram analisadas 304 respostas ao questionário de satisfação e de seguida aplicou-se o modelo a seis grupos de clientes segmentados de acordo com a contribuição do cliente para as receitas e o comportamento no processo de decisão de compra. Recorreu-se a modelos SEM (Structural Equation Modelling) com estimação dos parâmetros através da metodologia PLS (partial Least Squares). Os resultados mostram nos seis segmentos, que os valores da empresa, a cooperação através da competência dos colaboradores e da orientação ao cliente e a tecnologia são factores mais importantes para a satisfação e lealdade dos clientes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric Vehicles (EVs) have limited energy storage capacity and the maximum autonomy range is strongly dependent of the driver's behaviour. Due to the fact of that batteries cannot be recharged quickly during a journey, it is essential that a precise range prediction is available to the driver of the EV. With this information, it is possible to check if the desirable destination is achievable without a stop to charge the batteries, or even, if to reach the destination it is necessary to perform an optimized driving (e.g., cutting the air-conditioning, among others EV parameters). The outcome of this research work is the development of an Electric Vehicle Assistant (EVA). This is an application for mobile devices that will help users to take efficient decisions about route planning, charging management and energy efficiency. Therefore, it will contribute to foster EVs adoption as a new paradigm in the transportation sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Customer lifetime value (LTV) enables using client characteristics, such as recency, frequency and monetary (RFM) value, to describe the value of a client through time in terms of profitability. We present the concept of LTV applied to telemarketing for improving the return-on-investment, using a recent (from 2008 to 2013) and real case study of bank campaigns to sell long- term deposits. The goal was to benefit from past contacts history to extract additional knowledge. A total of twelve LTV input variables were tested, un- der a forward selection method and using a realistic rolling windows scheme, highlighting the validity of five new LTV features. The results achieved by our LTV data-driven approach using neural networks allowed an improvement up to 4 pp in the Lift cumulative curve for targeting the deposit subscribers when compared with a baseline model (with no history data). Explanatory knowledge was also extracted from the proposed model, revealing two highly relevant LTV features, the last result of the previous campaign to sell the same product and the frequency of past client successes. The obtained results are particularly valuable for contact center companies, which can improve pre- dictive performance without even having to ask for more information to the companies they serve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was supported by FCT (Fundação para a Ciência e Tecnologia) within Project Scope (UID/CEC/00319/2013), by LIP (Laboratório de Instrumentação e Física Experimental de Partículas) and by Project Search-ON2 (NORTE-07-0162- FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of m-Health applications are being developed benefiting health service delivery. In this paper, a new methodology based on the principle of calm computing applied to diagnostic and therapeutic procedure reporting is proposed. A mobile application was designed for the physicians of one of the Portuguese major hospitals, which takes advantage of a multi-agent interoperability platform, the Agency for the Integration, Diffusion and Archive (AIDA). This application allows the visualization of inpatients and outpatients medical reports in a quicker and safer manner, in addition to offer a remote access to information. This project shows the advantages in the use of mobile software in a medical environment but the first step is always to build or use an interoperability platform, flexible, adaptable and pervasive. The platform offers a comprehensive set of services that restricts the development of mobile software almost exclusively to the mobile user interface design. The technology was tested and assessed in a real context by intensivists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PhD thesis in Bioengineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Tecnologias e Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of new and druggable targets in bacteria is a critical endeavour in pharmaceutical research of novel antibiotics to fight infectious agents. The rapid emergence of resistant bacteria makes today's antibiotics more and more ineffective, consequently increasing the need for new pharmacological targets and novel classes of antibacterial drugs. A new model that combines the singular value decomposition technique with biological filters comprised of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of E. coli has been developed to predict potential drug targets in the Enterobacteriaceae family [1]. This model identified 99 potential target proteins amongst the studied bacterial family, exhibiting eight different functions that suggest that the disruption of the activities of these proteins is critical for cells. Out of these candidates, one was selected for target confirmation. To find target modulators, receptor-based pharmacophore hypotheses were built and used in the screening of a virtual library of compounds. Postscreening filters were based on physicochemical and topological similarity to known Gram-negative antibiotics and applied to the retrieved compounds. Screening hits passing all filters were docked into the proteins catalytic groove and 15 of the most promising compounds were purchased from their chemical vendors to be experimentally tested in vitro. To the best of our knowledge, this is the first attempt to rationalize the search of compounds to probe the relevance of this candidate as a new pharmacological target.