979 resultados para Self-dual codes
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimental and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing photo capacitance to control the power delivered to the load.
Resumo:
Introdução: Programas de self-management têm como objectivo habilitar os pacientes com estratégias necessárias para levar a cabo procedimentos específicos para a patologia. A última revisão sistemática sobre selfmanagament em DPOC foi realizada em 2007, concluindo-se que ainda não era possível fornecer dados claros e suficientes acerca de recomendações sobre a estrutura e conteúdo de programas de self-managament na DPOC. A presente revisão tem o intuito de complementar a análise da revisão anterior, numa tentativa de inferir a influência do ensino do self-management na DPOC. Objectivos: verificar a influência dos programas de self-management na DPOC, em diversos indicadores relacionados com o estado de saúde do paciente e na sua utilização dos serviços de saúde. Estratégia de busca: pesquisa efectuada nas bases de dados PubMed e Cochrane Collaboration (01/01/2007 – 31/08/2010). Palavras-chave: selfmanagement education, self-management program, COPD e pulmonary rehabilitation. Critérios de Selecção: estudos randomizados sobre programas de selfmanagement na DPOC. Extracção e Análise dos Dados: 2 investigadores realizaram, independentemente, a avaliação e extracção de dados de cada artigo. Resultados: foram considerados 4 estudos randomizados em selfmanagement na DPOC nos quais se verificaram benefícios destes programas em diversas variáveis: qualidade de vida a curto e médio prazo, utilização dos diferentes recursos de saúde, adesões a medicação de rotina, controle das exacerbações e diminuição da sintomatologia. Parece não ocorrer alteração na função pulmonar e no uso de medicação de emergência, sendo inconclusivo o seu efeito na capacidade de realização de exercício. Conclusões: programas de self-management aparentam ter impacto positivo na qualidade de vida, recurso a serviços de saúde, adesão à medicação, planos de acção e níveis de conhecimento da DPOC. Discrepâncias nos critérios de selecção das amostras utilizadas, períodos de seguimento desiguais, consistência das variáveis mensuradas, condicionam a informação disponibilizada sobre este assunto.
Resumo:
The criticality of self-assembled rigid rods on triangular lattices is investigated using Monte Carlo simulation. We find a continuous transition between an ordered phase, where the rods are oriented along one of the three (equivalent) lattice directions, and a disordered one. We conclude that equilibrium polydispersity of the rod lengths does not affect the critical behavior, as we found that the criticality is the same as that of monodisperse rodson the same lattice, in contrast with the results of recently published work on similar models. (C) 2011 American Institute of Physics. [doi:10.1063/1.3556665]
Resumo:
O objetivo deste trabalho consiste em avaliar as capacidades das femto-células, no âmbito do planeamento e otimização de redes Universal Mobile Telecommunication System (UMTS) instaladas no interior de edifícios num ambiente empresarial. A avaliação será feita através do estudo da tecnologia das femto-células, e do planeamento efetuado num cenário real onde, através do desenvolvimento e teste de um conjunto parametrizações, será avaliado o funcionamento das femto-células assim como forma de otimizar o seu desempenho. O estudo realizado permitiu identificar um conjunto de características que as femto-células partilham com as Self-Organizing Networks (SON), como a auto-configuração, auto-otimização de parâmetros rádio, ajuste dinâmico da área de cobertura, atribuição automática de Scrambling Codes (SC) e da frequência da portadora, criação automática de relações de vizinhança, entre outras, que permitem facilitar o processo de planeamento e otimização de redes móveis UMTS. Recorrendo a um cenário empresarial real, foi efetuado um planeamento celular indoor de raiz, através do qual foi possível testar o funcionamento da algumas das principais funções das femto-células, nomeadamente a capacidade de ajuste dinâmico da área de cobertura. Foi também avaliado o funcionamento de um grupo co-localizado de femto-células, onde foi possível testar parametrizações com o objetivo de melhorar o processo de handover entre as femto-células do grupo, e entre estas e a rede macro Global System for Mobile Communications (GSM). A avaliação de cada um de cada uma das parametrizações testada, é efetuada a partir das medidas recolhidas no terreno, recorrendo à ferramenta TEMS® Investigation, assim como aos Key Performance Indicators (KPIs) que as femto-células disponibilizam. Os resultados obtidos mostram o benefício da utilização das femto-células num ambiente empresarial real, assim como os eventuais problemas e desafios que podem surguir do planeamento celular indoor recorrendo à tecnologia das femto-células, sendo apresentada a parametrização que permite obter o melhor desempenho da rede instalada.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
Scheduling resolution requires the intervention of highly skilled human problemsolvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. This paper addresses the resolution of complex scheduling problems using cooperative negotiation. A Multi-Agent Autonomic and Meta-heuristics based framework with self-configuring capabilities is proposed.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).
Resumo:
Development of Dual Source Computed Tomography (Definition, Siemens Medical Solutions, Erlanger, Germany) allowed advances in temporal resolution, with the addition of a second X-ray source and an array of detectors to the TCM 64 slices. The ability to run exams on Dual Energy, allows greater differentiation of tissues, showing differences between closer attenuation coefficients. In terms of renal applications, the distinction of kidney stones and masses become one of the main advantages of the use of dual-energy technology. This article pretends to demonstrate operating principles of this equipment, as its main renal applications.
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.
Resumo:
Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.
Resumo:
In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. At this scenario, self-optimizing arise as the ability of the agent to monitor its state and performance and proactively tune itself to respond to environmental stimuli.
Resumo:
In this paper, we foresee the use of Multi-Agent Systems for supporting dynamic and distributed scheduling in Manufacturing Systems. We also envisage the use of Autonomic properties in order to reduce the complexity of managing systems and human interference. By combining Multi-Agent Systems, Autonomic Computing, and Nature Inspired Techniques we propose an approach for the resolution of dynamic scheduling problem, with Case-based Reasoning Learning capabilities. The objective is to permit a system to be able to automatically adopt/select a Meta-heuristic and respective parameterization considering scheduling characteristics. From the comparison of the obtained results with previous results, we conclude about the benefits of its use.
Resumo:
The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.