975 resultados para Random close packing
Resumo:
We show that the density of eigenvalues for three classes of random matrix ensembles is determinantal. First we derive the density of eigenvalues of product of k independent n x n matrices with i.i.d. complex Gaussian entries with a few of matrices being inverted. In second example we calculate the same for (compatible) product of rectangular matrices with i.i.d. Gaussian entries and in last example we calculate for product of independent truncated unitary random matrices. We derive exact expressions for limiting expected empirical spectral distributions of above mentioned ensembles.
Resumo:
Speech enhancement in stationary noise is addressed using the ideal channel selection framework. In order to estimate the binary mask, we propose to classify each time-frequency (T-F) bin of the noisy signal as speech or noise using Discriminative Random Fields (DRF). The DRF function contains two terms - an enhancement function and a smoothing term. On each T-F bin, we propose to use an enhancement function based on likelihood ratio test for speech presence, while Ising model is used as smoothing function for spectro-temporal continuity in the estimated binary mask. The effect of the smoothing function over successive iterations is found to reduce musical noise as opposed to using only enhancement function. The binary mask is inferred from the noisy signal using Iterated Conditional Modes (ICM) algorithm. Sentences from NOIZEUS corpus are evaluated from 0 dB to 15 dB Signal to Noise Ratio (SNR) in 4 kinds of additive noise settings: additive white Gaussian noise, car noise, street noise and pink noise. The reconstructed speech using the proposed technique is evaluated in terms of average segmental SNR, Perceptual Evaluation of Speech Quality (PESQ) and Mean opinion Score (MOS).
Resumo:
A network cascade model that captures many real-life correlated node failures in large networks via load redistribution is studied. The considered model is well suited for networks where physical quantities are transmitted, e.g., studying large scale outages in electrical power grids, gridlocks in road networks, and connectivity breakdown in communication networks, etc. For this model, a phase transition is established, i.e., existence of critical thresholds above or below which a small number of node failures lead to a global cascade of network failures or not. Theoretical bounds are obtained for the phase transition on the critical capacity parameter that determines the threshold above and below which cascade appears or disappears, respectively, that are shown to closely follow numerical simulation results. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A network cascade model that captures many real-life correlated node failures in large networks via load redistribution is studied. The considered model is well suited for networks where physical quantities are transmitted, e.g., studying large scale outages in electrical power grids, gridlocks in road networks, and connectivity breakdown in communication networks, etc. For this model, a phase transition is established, i.e., existence of critical thresholds above or below which a small number of node failures lead to a global cascade of network failures or not. Theoretical bounds are obtained for the phase transition on the critical capacity parameter that determines the threshold above and below which cascade appears or disappears, respectively, that are shown to closely follow numerical simulation results. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We have addressed the microscopic transport mechanism at the switching or `on-off' transition in transition metal dichalcogenide (TMDC) field-effect transistors (FETs), which has been a controversial topic in TMDC electronics, especially at room temperature. With simultaneous measurement of channel conductivity and its slow time-dependent fluctuation (or noise) in ultrathin WSe2 and MoS2 FETs on insulating SiO2 substrates where noise arises from McWhorter-type carrier number fluctuations, we establish that the switching in conventional backgated TMDC FETs is a classical percolation transition in a medium of inhomogeneous carrier density distribution. From the experimentally observed exponents in the scaling of noise magnitude with conductivity, we observe unambiguous signatures of percolation in a random resistor network, particularly, in WSe2 FETs close to switching, which crosses over to continuum percolation at a higher doping level. We demonstrate a powerful experimental probe to the microscopic nature of near-threshold electrical transport in TMDC FETs, irrespective of the material detail, device geometry, or carrier mobility, which can be extended to other classes of 2D material-based devices as well.
Resumo:
A unique strategy was adopted to achieve an ultra-low electrical percolation threshold of multiwall carbon nanotubes (MWNTs) (0.25 wt%) in a classical partially miscible blend of poly-alpha-methylstyrene-co-acrylonitrile and poly(methyl methacrylate) (P alpha MSAN/PMMA), with a lower critical solution temperature. The polymer blend nanocomposite was prepared by standard melt-mixing followed by annealing above the phase separation temperature. In a two-step mixing protocol, MWNTs were initially melt-mixed with a random PS-r-PMMA copolymer and subsequently diluted with 85/15 P alpha MSAN/PMMA blends in the next mixing step. Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhanced electromagnetic interference (EMI) shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT-covered droplets, as compared to the blends without the copolymer, which were transparent to electromagnetic radiation.
Resumo:
The Mapping Closure Approximation (MCA) approach is developed to describe the statistics of both conserved and reactive scalars in random flows. The statistics include Probability Density Function (PDF), Conditional Dissipation Rate (CDR) and Conditional Laplacian (CL). The statistical quantities are calculated using the MCA and compared with the results of the Direct Numerical Simulation (DNS). The results obtained from the MCA are in agreement with those from the DNS. It is shown that the MCA approach can predict the statistics of reactive scalars in random flows.
Resumo:
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.
Resumo:
The forces of random wave plus current acting on a simplified offshore platform (jacket) model have been studied numerically and experimentally. The numerical results are in good agreement with experiments. The mean force can be approximated as a function of equivalent velocity parameter and the root-mean-square force as a function of equivalent significant wave height parameter.
Resumo:
This paper is concerned with the response statistics of a dynamic system that has random properties. The frequency-band-averaged energy of the system is considered, and a closed form expression is derived for the relative variance of this quantity. The expression depends upon three parameters: the modal overlap factor m, a bandwidth parameter B, and a parameter α that defines the nature of the loading (for example single point forcing or rain-on-the-roof loading). The result is applicable to any single structural component or acoustic volume, and a comparison is made here with simulation results for a mass loaded plate. Good agreement is found between the simulations and the theory. © 2003 Published by Elsevier Ltd.
Resumo:
A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.
Resumo:
This paper is concerned with the ensemble statistics of the response to harmonic excitation of a single dynamic system such as a plate or an acoustic volume. Random point process theory is employed, and various statistical assumptions regarding the system natural frequencies are compared, namely: (i) Poisson natural frequency spacings, (ii) statistically independent Rayleigh natural frequency spacings, and (iii) natural frequency spacings conforming to the Gaussian orthogonal ensemble (GOE). The GOE is found to be the most realistic assumption, and simple formulae are derived for the variance of the energy of the system under either point loading or rain-on-the-roof excitation. The theoretical results are compared favourably with numerical simulations and experimental data for the case of a mass loaded plate. © 2003 Elsevier Ltd. All rights reserved.