983 resultados para Random Variable
Resumo:
Regional impacts of climate change remain subject to large uncertainties accumulating from various sources, including those due to choice of general circulation models (GCMs), scenarios, and downscaling methods. Objective constraints to reduce the uncertainty in regional predictions have proven elusive. In most studies to date the nature of the downscaling relationship (DSR) used for such regional predictions has been assumed to remain unchanged in a future climate. However,studies have shown that climate change may manifest in terms of changes in frequencies of occurrence of the leading modes of variability, and hence, stationarity of DSRs is not really a valid assumption in regional climate impact assessment. This work presents an uncertainty modeling framework where, in addition to GCM and scenario uncertainty, uncertainty in the nature of the DSR is explored by linking downscaling with changes in frequencies of such modes of natural variability. Future projections of the regional hydrologic variable obtained by training a conditional random field (CRF) model on each natural cluster are combined using the weighted Dempster-Shafer (D-S) theory of evidence combination. Each projection is weighted with the future projected frequency of occurrence of that cluster (''cluster linking'') and scaled by the GCM performance with respect to the associated cluster for the present period (''frequency scaling''). The D-S theory was chosen for its ability to express beliefs in some hypotheses, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The methodology is tested for predicting monsoon streamflow of the Mahanadi River at Hirakud Reservoir in Orissa, India. The results show an increasing probability of extreme, severe, and moderate droughts due to limate change. Significantly improved agreement between GCM predictions owing to cluster linking and frequency scaling is seen, suggesting that by linking regional impacts to natural regime frequencies, uncertainty in regional predictions can be realistically quantified. Additionally, by using a measure of GCM performance in simulating natural regimes, this uncertainty can be effectively constrained.
Resumo:
The stochasticity of domain-wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nickel, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time dependence of noise reveals a diffusive random walk of the DWs with a universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.
Resumo:
We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincaré recurrence time, the survival probability of still finding the system at timet in the same state in which it was prepared att=0 is exactly calculated.
Resumo:
The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.
Resumo:
Markov random fields (MRF) are popular in image processing applications to describe spatial dependencies between image units. Here, we take a look at the theory and the models of MRFs with an application to improve forest inventory estimates. Typically, autocorrelation between study units is a nuisance in statistical inference, but we take an advantage of the dependencies to smooth noisy measurements by borrowing information from the neighbouring units. We build a stochastic spatial model, which we estimate with a Markov chain Monte Carlo simulation method. The smooth values are validated against another data set increasing our confidence that the estimates are more accurate than the originals.
Resumo:
A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
The k-colouring problem is to colour a given k-colourable graph with k colours. This problem is known to be NP-hard even for fixed k greater than or equal to 3. The best known polynomial time approximation algorithms require n(delta) (for a positive constant delta depending on k) colours to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we look at the average performance of an algorithm rather than its worst-case performance. It is well known that a k-colourable graph drawn from certain classes of distributions can be ii-coloured almost surely in polynomial time. In this paper, we present further results in this direction. We consider k-colourable graphs drawn from the random model in which each allowed edge is chosen independently with probability p(n) after initially partitioning the vertex set into ii colour classes. We present polynomial time algorithms of two different types. The first type of algorithm always runs in polynomial time and succeeds almost surely. Algorithms of this type have been proposed before, but our algorithms have provably exponentially small failure probabilities. The second type of algorithm always succeeds and has polynomial running time on average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work as long as p(n) greater than or equal to n(-1+is an element of) where is an element of is a constant greater than 1/4.
Resumo:
The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.
Resumo:
Random walks describe diffusion processes, where movement at every time step is restricted to only the neighboring locations. We construct a quantum random walk algorithm, based on discretization of the Dirac evolution operator inspired by staggered lattice fermions. We use it to investigate the spatial search problem, that is, to find a marked vertex on a d-dimensional hypercubic lattice. The restriction on movement hardly matters for d > 2, and scaling behavior close to Grover's optimal algorithm (which has no restriction on movement) can be achieved. Using numerical simulations, we optimize the proportionality constants of the scaling behavior, and demonstrate the approach to that for Grover's algorithm (equivalent to the mean-field theory or the d -> infinity limit). In particular, the scaling behavior for d = 3 is only about 25% higher than the optimal d -> infinity value.
Resumo:
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d = 2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article A. Patel and M. A. Rahaman, Phys. Rev. A 82, 032330 (2010)] provides an O(root N ln N) algorithm, which is not optimal. The scaling behavior can be improved to O(root N ln N) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78, 012310 (2008)]. We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.
Resumo:
Ever since its initial introduction some fifty years ago, the rational expectations paradigm has dominated the way economic theory handles uncertainty. The main assertion made by John F. Muth (1961), seen by many as the father of the paradigm, is that expectations of rational economic agents should essentially be equal to the predictions of relevant economic theory, since rational agents should use information available to them in an optimal way. This assumption often has important consequences on the results and interpretations of the models where it is applied. Although the rational expectations assumption can be applied to virtually any economic theory, the focus in this thesis is on macroeconomic theories of consumption, especially the Rational Expectations–Permanent Income Hypothesis proposed by Robert E. Hall in 1978. The much-debated theory suggests that, assuming that agents have rational expectations on their future income, consumption decisions should follow a random walk, and the best forecast of future consumption level is the current consumption level. Then, changes in consumption are unforecastable. This thesis constructs an empirical test for the Rational Expectations–Permanent Income Hypothesis using Finnish Consumer Survey data as well as various Finnish macroeconomic data. The data sample covers the years 1995–2010. Consumer survey data may be interpreted to directly represent household expectations, which makes it an interesting tool for this particular test. The variable to be predicted is the growth of total household consumption expenditure. The main empirical result is that the Consumer Confidence Index (CCI), a balance figure computed from the most important consumer survey responses, does have statistically significant predictive power over the change in total consumption expenditure. The history of consumption expenditure growth itself, however, fails to predict its own future values. This indicates that the CCI contains some information that the history of consumption decisions does not, and that the consumption decisions are not optimal in the theoretical context. However, when conditioned on various macroeconomic variables, the CCI loses its predictive ability. This finding suggests that the index is merely a (partial) summary of macroeconomic information, and does not contain any significant private information on consumption intentions of households not directly deductible from the objective economic variables. In conclusion, the Rational Expectations–Permanent Income Hypothesis is strongly rejected by the empirical results in this thesis. This result is in accordance with most earlier studies conducted on the topic.
Resumo:
Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R-d, d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.
Resumo:
The response of the Van der Pol oscillator to stationary narrowband Gaussian excitation is considered. The central frequency of excitation is taken to be in the neighborhood of the system limit cycle frequency. The solution is obtained using a non-Gaussian closure approximation on the probability density function of the response. The validity of the solution is examined with the help of a stochastic stability analysis. Solution based on Stratonovich''s quasistatic averaging technique is also obtained. The comparison of the theoretical solutions with the digital simulations shows that the theoretical estimates are reasonably good.
Resumo:
Conventional Random access scan (RAS) for testing has lower test application time, low power dissipation, and low test data volume compared to standard serial scan chain based design In this paper, we present two cluster based techniques, namely, Serial Input Random Access Scan and Variable Word Length Random Access Scan to reduce test application time even further by exploiting the parallelism among the clusters and performing write operations on multiple bits Experimental results on benchmarks circuits show on an average 2-3 times speed up in test write time and average 60% reduction in write test data volume