401 resultados para REPRESSOR
Resumo:
Objective-We previously demonstrated that upregulation of intermediate-conductance Ca2+ -activated K+ channels (KCa 3.1) is necessary for mitogen-induced phenotypic modulation in isolated porcine coronary smooth muscle cells (SMCs). The objective of the present study was to determine the role of KCa3.1 in the regulation of coronary SMC phenotypic modulation in vivo using a swine model of postangioplasty restenosis. Methods and Results-Balloon angioplasty was performed on coronary arteries of swine using either noncoated or balloons coated with the specific KCa3.1 blocker TRAM-34. Expression of KCa3.1, c-jun, c-fos, repressor element-1 silencing transcription factor (REST), smooth muscle myosin heavy chain (SMMHC), and myocardin was measured using qRT-PCR in isolated medial cells 2 hours and 2 days postangioplasty. KCa3.1, c-jun, and c-fos mRNA levels were increased 2 hours postangioplasty, whereas REST expression decreased. SMMHC expression was unchanged at 2 hours, but decreased 2 days postangioplasty. Use of TRAM-34 coated balloons prevented KCa3.1 upregulation and REST downregulation at 2 hours, SMMHC and myocardin downregulation at 2 days, and attenuated subsequent restenosis 14 and 28 days postangioplasty. Immunohistochemical analysis demonstrated corresponding changes at the protein level. Conclusion-Blockade of KCa3.1 by delivery of TRAM-34 via balloon catheter prevented smooth muscle phenotypic modulation and limited subsequent restenosis. © 2008 American Heart Association, Inc.
Resumo:
Bifidobacteria constitute a specific group of commensal bacteria, typically found in the gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breast-fed infants. In the current study, we investigated glycosulfatase activity in a bacterial nursling stool isolate, B. breve UCC2003. Two putative sulfatases were identified on the genome of B. breve UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was shown to support growth of B. breve UCC2003, while, N-acetylglucosamine-3-sulfate, N-acetylgalactosamine-3-sulfate and N-acetylgalactosamine-6-sulfate, did not support appreciable growth. Using a combination of transcriptomic and functional genomic approaches, a gene cluster, designated ats2, was shown to be specifically required for GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a ROK-family transcriptional repressor. This study represents the first description of glycosulfatase activity within the Bifidobacterium genus. Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals and insects. Bifidobacterium breve strains utilize a variety of plant and host-derived carbohydrates which allow them to be present as prominent members of the infant gut microbiota as well as being present in the gastrointestinal tract of adults. In this study, we introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the digestive tract. The results of this study provide further evidence of this species' ability to utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the infant and adult gut.
Resumo:
Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P. aeruginosa strains PA14. As defective mexR is a genetic trait associated with the clinical emergence of nalB-type multidrug resistance in P. aeruginosa during antibiotic treatment, we investigated the involvement of CpxR in regulating multidrug resistance among resistant isolates generated in the laboratory via antibiotic treatment and collected in clinical settings. CpxR is required to activate expression of mexAB-oprM and enhances drug resistance, in the absence or presence of MexR, in ofloxacin-cefsulodin-resistant isolates generated in the laboratory. Furthermore, CpxR was also important in the mexR-defective clinical isolates. The newly identified regulatory linkage between CpxR and the MexAB-OprM efflux pump highlights the presence of a complex regulatory network modulating multidrug resistance in P. aeruginosa.
Resumo:
G6PC3 is a widely expressed isoform of glucose-6-phosphatase, found in many foetal and adult tissues. Mutations in this gene cause developmental abnormalities and severe neutropenia due to abolition of glucose recycling between the cytoplasm and endoplasmic reticulum. Low G6PC3 expression as a result of promoter polymorphisms or dysregulation could produce similar outcomes. Here we investigated the regulation of human G6PC3 promoter activity. HeLa and H4IIE cells were transiently transfected with G6PC3 promoter coupled to the firefly luciferase gene, and promoter activity was measured by dual luciferase assay. Activity was highest in a 453 bp segment of the G6PC3 promoter, from − 455 to − 3 relative to the transcriptional start site. This promoter was unresponsive to glucostatic hormones. Its activity increased significantly between 1 and 5.5 mM glucose, and was not elevated further by glucose concentrations up to 25 mM. Pyruvate increased its activity, but β-hydroxybutyrate and sodium acetate did not. Promoter activity was reduced by inhibitors of hexokinase, glyceraldehyde phosphate dehydrogenase and the oxidative branch of the pentose phosphate pathway, but not by a transketolase inhibitor. Deletion of two adjacent Enhancer-boxes (− 274 to − 279 and − 299 to − 304) reduced promoter activity and abolished the glucose effect, suggesting they could function as a glucose response element. Deletion of an additional downstream 140 bp (− 140 to − 306) restored activity, but not the glucose response, suggesting the presence of repressor elements in this region. 5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) reduced promoter activity, showing dependence on AMP-kinase. Regulation of the G6PC3 promoter is thus radically different to that of the hepatic isoform, G6PC. It is sensitive to carbohydrate, but not to fatty acid metabolites, and at much lower physiological concentrations. Based on these findings, we speculate that reduced G6PC3 expression could occur during hypoglycemic episodes in vivo, which are common in utero and in the postnatal period. If such episodes lower G6PC3 expression they could place the foetus or infant at risk of impaired immune function and development, and this possibility requires further examination both in vitro and in vivo.
Resumo:
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.
Resumo:
Suppressor of cytokine signalling 3 (SOCS3) is a potent inhibitor of the mitogenic, migratory and pro-inflammatory pathways responsible for the development of neointimal hyperplasia (NIH), a key contributor to the failure of vascular reconstructive procedures. However, the protein levels of SOCS3, and therefore its potential to reduce NIH, is limited by its ubiquitylation and high turnover by the proteasome. I hypothesised that stabilisation of endogenous SOCS3 by inhibiting its ubiquitylation has the potential to limit vascular inflammation and NIH. Consequently, the aim of this PhD was to identify the mechanisms promoting the rapid turnover of SOCS3. Initial experiments involved the identification of residues involved in regulating the turnover of SOCS3 at the proteasome. I assessed the ubiquitylation status of a panel of FLAG tagged SOCS3 truncation mutants and identified a C-terminal 44 amino acid region required for SOCS3 ubiquitylation. This region localised to the SOCS box which is involved in binding Elongin B/C and the formation of a functional E3 ubiquitin ligase complex. However, the single lysine residue at position 173, located within this 44 amino acid region, was not required for ubiquitylation. Moreover, Emetine chase assays revealed that loss of either Lys173 or Lys6 (as documented in the literature) had no significant effect on SOCS3 stability 8 hrs post emetine treatment. As mutagenesis studies failed to identify key sites of ubiquitylation responsible for targeting SOCS3 to the proteasome, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate was employed. These data were searched for the presence of a Gly-Gly doublet (+114 Da mass shift) and revealed 8 distinct sites of ubiquitylation (Lys23, Lys28, Lys40, Lys85, Lys91, Lys173, Lys195, Lys206) on SOCS3 however Lys6 ubiquitylation was not detected. As multiple Lys residues were ubiquitylated, I hypothesised that only a Lys-less SOCS3, in which all 8 Lys residues were mutated to Arg, would be resistant to ubiquitylation. Compared to WT SOCS3, Lys-less SOCS3 was indeed found to be completely resistant to ubiquitylation, and significantly more stable than WT SOCS3. These changes occurred in the absence of any detrimental effect on the ability of Lys-less SOCS3 to interact with the Elongin B/C components required to generate a functional E3 ligase complex. In addition, both WT and Lys-less SOCS3 were equally capable of inhibiting cytokine-stimulated STAT3 phosphorylation upon co-expression with a chimeric EpoR-gp130 receptor. To assess whether SOCS3 auto-ubiquitylates I generated an L189A SOCS3 mutant that could no longer bind the Elongins and therefore form the E3 ligase complex required for ubiquitylation. A denaturing IP to assess the ubiquitylation status of this mutant was performed and revealed that, despite an inability to bind the Elongins, the L189A mutant was poly-ubiquitylated similar to WT SOCS3. Together these data suggested that SOCS3 does not auto-ubiquitylate and that a separate E3 ligase must regulate SOCS3 ubiquitylation. This study sought to identify the E3 ligase and deubiquitylating (DUB) enzymes controlling the ubiquitylation of SOCS3. Our initial strategy was to develop a tool to screen an E3 ligase/DUB library, using an siARRAY, to sequentially knockdown all known E3 ligases in the presence of a SOCS3-luciferase fusion protein or endogenous SOCS3 in a high content imaging screening platform. However, due to a poor assay window (<2) and non-specific immunoreactivity of SOCS3 antibodies available, these methods were deemed unsuitable for screening purposes. In the absence of a suitable tool to screen the si-ARRAY, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate (co-IP) was investigated. I performed a SOCS3 under conditions which preserved protein-protein interactions, with the aim of identifying novel E3 ligase and/or DUBs that could potentially interact with SOCS3. These data were searched for E3 ligase or DUB enzymes that may interact with SOCS3 in HEK293 cells and identified two promising candidates i) an E3 ligase known as HectD1 and ii) a DUB known as USP15. This thesis has demonstrated that in the presence of HectD1 overexpression, a slight increase in K63-linked polyubiquitylation of SOCS3 was observed. Mutagenesis also revealed that an N-terminal region of SOCS3 may act as a repressor of this interaction with HectD1. Additionally, USP15 was shown to reduce SOCS3 polyubiquitylation in a HEK293 overexpression system suggesting this may act as a DUB for SOCS3. The C-terminal region of SOCS3 was also shown to play a major role in the interaction with USP15. The original hypothesis of this thesis was that stabilisation of endogenous SOCS3 by inhibiting its ubiquitylation has the potential to limit vascular inflammation and NIH. Consistent with this hypothesis, immunohistochemistry visualisation of SOCS3, in human saphenous vein tissue derived from CABG patients, revealed that while SOCS3 was present throughout the media of these vessels the levels of SOCS3 within the neointima was reduced. Finally, preliminary data supporting the hypothesis that SOCS3 overexpression may limit the proliferation, but not migration, of human saphenous vein smooth muscle cells (HSVSMCs) is presented. It is expected that multiple E3 ligases and DUBs will contribute to the regulation of SOCS3 turnover. However, the identification of candidate E3 ligases or DUBs that play a significant role in SOCS3 turnover may facilitate the development of peptide disruptors or gene therapy targets to attenuate pathological SMC proliferation. A targeted approach, inhibiting the interaction between SOCS3 and identified E3 ligase, that controls the levels of SOCS3, would be expected to reduce the undesirable effects associated with global inhibition of the E3 ligase involved.
Resumo:
Dissertação de Mestrado, Oncobiologia: Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
BACKGROUND Integrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain. RESULTS Our results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes. CONCLUSIONS Ancestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
Resumo:
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA.
Resumo:
Based on the contribuions from Ryngaert (1995); Prado (2009); Magaldi (2008); Faria (1998); Heliodora (2008); Guinsburg, Faria and Lima (2009), refering to the constituion of the theatrical discourse, in studies of Fausto (2012); Cotrim (2005); Gaspari (2002) and Garcia (2008), about the notes Brazilian historical and the theoretical presupposes of Carvalhal (2003, 2006); Nitrini (2000); Nascimento (2006) and Maddaluno (1991) to approach to the study of comparative literature, this work aims to analyze the play Liberdade, liberdade (1965), by Millôr Fernandes and Flávio Rangel whit the Brazilian dictatorship period (1964-1985). This play was written and performed at the beginning of the regime, as it wished to withdraw from the scheme repressor that dominated Brazil. Millôr Fernandes and Flávio Rangel resorted to the use of classical texts and historical preparation for the work, and make use of music to bring up the subject of ceaseless quest for freedom. The play runs from dramatic to comedic, supported by political discourse, which leads, the called Theatre of resistance. For this work, the basic procedure was the literature search. Through the analysis of the dramatic text and the recurrent use of bricolage (collage of historical texts), perceives the practice of intertextuality theme. Thus, one can understand that Liberdade, liberdade is a dramatic text produced in the second half of the twentieth century, which establishes dialogue with texts embodied historical aspect with literary verve.
Resumo:
Este artigo tem por objetivo uma abordagem crítica acerca da novela Desabrigo, de Antônio Fraga, como expressão do espaço destinado à malandragem como prática a ser coibida pelo aparelho repressor. O cenário de ação do Rio de Janeiro contribui como termo que agrava a discussão acerca do poder central como agente de um processo de higienização social que expulsa para a periferia da cidade rufiões, prostitutas e jogadores como personagens indesejáveis à novo ordem que se estabelece como o pós-guerra. Publicada em 1942, Desabrigo parece condenada à incúria de editores e críticos que ignoram seu elevado valor de obra literária que teve que esperar por várias décadas para ser reconhecida.