771 resultados para Physical education teachers -- Queensland
Resumo:
Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula” presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.
Resumo:
Physical inactivity has become a major cause of the global increase in non-communicable disease (World Health Organisation, 2009}. In 2008, the World Economic Forum called for employers to be proactive in the prevention of non-communicable diseases in the workforce. A significant contributor to the development of a healthy workforce is a reliable pool of employees who are receptive to and aware of healthy lifestyle practices even before becoming employed. Health and Physical Education (HPE) is often stereotyped as 'doing sport'. However, if HPE is to play a part in the development of a healthy workforce, then the HPE learning environment must be about creating meaningful learning for all, which is clearly more than the creation of elite athletes. The ultimate aim of health and physical educators must be about 1) developing lifelong and habitual physical activity; 2) developing generic physical skills; 3) inspiring holistic and positive emotional attitudes and 4) instilling a focus on evidence based knowledge as a framework for inspiring active citizenship. As a response to the worldwide move to the development of healthier people, Australia currently has a strong momentum for an expanded and more unified role for HPE within a potential National curriculum. Other countries have engaged in such a process and much can be learned from their experiences of the process. The 2009 Australian Council for Health, Physical Education and Recreation (ACHPER) conference was a landmark conference that included an International group of experts from all continents and twenty three countries. Creating Active Futures: Edited Proceedings of the 26th ACHPER International Conference is an amalgamation of research and professional perspectives presented at the conference. The papers in this volume emerged from those presented for peer review, rather than through seeking specific articles. This volume is divided into sections based on the five conference themes: 1) Issues in Health and Physical Education (HPE) Pedagogy; 2) Practical Application of Science in HPE; 3) Lifestyle Enhancement; 4) Developing Sporting Excellence; 5) Contemporary Games Teaching. The 'Issues in HPE Pedagogy' section provides a diverse set of perspectives on teaching HPE with papers from a range of topics that include first aid, philosophy, access, cultural characteristics, methods and teaching styles, curriculum, qualifications and emotional development. The second section links science to teaching HPE and provides a range of valuable information on injury prevention, information technology, personality and skill development. Section 3 is a collection of writings and research about Lifestyle Enhancement. Topics include the important role of adventure, the natural world, curriculum, migrant viewpoints, beliefs and globally focused programs in the development of active citizens. The section on sporting excellence contains papers that undertake to explain an aspect of excellence in sport. The last section of this volume highlights some contemporary views on teaching games.
Resumo:
The perceived benefits of Wellness Education in University environments are substantiated by a number of studies in relation to the place, impact and purpose of Wellness curricula. Many authors recommend that Wellness curriculum design must include personal experiences, reflective practice and active self-managed learning approaches in order to legitimise the adoption of Wellness as a personal lifestyle approach. Wellness Education provides opportunities to engage in learning self-regulation skills both within and beyond the context of the Wellness construct. Learner success is optimised by creating authentic opportunities to develop and practice self regulation strategies that facilitate making meaning of life's experiences. Such opportunities include provision of options for self determined outcomes and are scaffolded according to learner needs; thus, configuring a learner-centred curriculum in Wellness Education would potentially benefit by overlaying principles from the domains of Self Determination Theory, Self Regulated Learning and Transformative Education Theory to highlight authentic, transformative learning as a lifelong approach to Wellness.
Resumo:
This review assembles pedometry literature focused on youth, with particular attention to expected values for habitual, school day, physical education class, recess, lunch break, out-of-school, weekend, and vacation activity. From 31 studies published since 1999, we constructed a youth habitual activity step-curve that indicates: (a) from ages 6 to 18 years, boys typically take more steps per day than girls; (b) for both sexes the youngest age groups appear to take fewer steps per day than those immediately older; and (c) from a young age, boys decline more in steps per day to become move consistent with girls at older ages. Additional studies revealed that boys take approximately 42-49% of daily steps during the school day; girls take 41-47%. Steps taken during physical education class contribute to total steps per day by 8.7-23.7% in boys and 11.4-17.2% in girls. Recess represents 8-11% and lunch break represents 15-16% of total steps per day. After-school activity contributes approximately 47-56% of total steps per day for boys and 47-59% for girls. Weekdays range from approximately 12,000 to 16,000 steps per day in boys and 10,000 to 14,000 steps per day in girls. The corresponding values for weekend days are 12,000-13,000 steps per day in boys and 10,000-12,000 steps per day in girls.
Resumo:
The figure Beets took exception to displays sex‐ and age‐specific median values of aggregated published expected values for pedometer determined physical activity.
Resumo:
Introduction: Why we need to base childrens’ sport and physical education on the principles of dynamical systems theory and ecological psychology As the childhood years are crucial for developing many physical skills as well as establishing the groundwork leading to lifelong participation in sport and physical activities, (Orlick & Botterill, 1977, p. 11) it is essential to examine current practice to make sure it is meeting the needs of children. In recent papers (e.g. Renshaw, Davids, Chow & Shuttleworth, in press; Renshaw, Davids, Chow & Hammond, in review; Chow et al., 2009) we have highlighted that a guiding theoretical framework is needed to provide a principled approach to teaching and coaching and that the approach must be evidence- based and focused on mechanism and not just on operational issues such as practice, competition and programme management (Lyle, 2002). There is a need to demonstrate how nonlinear pedagogy underpins teaching and coaching practice for children given that some of the current approaches underpinning children’s sport and P.E. may not be leading to optimal results. For example, little time is spent undertaking physical activities (Tinning, 2006) and much of this practice is not representative of the competition demands of the performance environment (Kirk & McPhail, 2002; Renshaw et al., 2008). Proponents of a non- linear pedagogy advocate the design of practice by applying key concepts such as the mutuality of the performer and environment, the tight coupling of perception and action, and the emergence of movement solutions due to self organisation under constraints (see Renshaw, et al., in press). As skills are shaped by the unique interacting individual, task and environmental constraints in these learning environments, small changes to individual structural (e.g. factors such as height or limb length) or functional constraints (e.g. factors such as motivation, perceptual skills, strength that can be acquired), task rules, equipment, or environmental constraints can lead to dramatic changes in movement patterns adopted by learners to solve performance problems. The aim of this chapter is to provide real life examples for teachers and coaches who wish to adopt the ideas of non- linear pedagogy in their practice. Specifically, I will provide examples related to specific issues related to individual constraints in children and in particular the unique challenges facing coaches when individual constraints are changing due to growth and development. Part two focuses on understanding how cultural environmental constraints impact on children’s sport. This is an area that has received very little attention but plays a very important part in the long- term development of sporting expertise. Finally, I will look at how coaches can manipulate task constraints to create effective learning environments for young children.
Resumo:
This paper focuses on implementing engineering education in middle school classrooms (grade levels 7-9). One of the aims of the study was to foster students’ and teachers’ knowledge and understanding of engineering in society. Given the increasing importance of engineering in shaping our daily lives, it is imperative that we foster in students an interest and drive to participate in engineering education, increase their awareness of engineering as a career path, and inform them of the links between engineering and the enabling subjects, mathematics, science, and technology. Data for the study are drawn from five classes across three schools. Grade 7 students’ responded to initial whole class discussions on what is an engineer, what is engineering, what characteristics engineers require, engineers (family/friends) that they know, and subjects that may facilitate an engineering career. Students generally viewed engineers as creative, future-oriented, and artistic problem finders and solvers; planners and designers; “seekers” and inventors; and builders of constructions. Students also viewed engineers as adventurous, decisive, community-minded, reliable, and “smart.” In addition to a range of mathematics and science topics, students identified business studies, ICT, graphics, art, and history as facilitating careers in engineering. Although students displayed a broadened awareness of engineering than the existing research suggests, there was limited knowledge of various engineering fields and a strong perception of engineering as large construction.
Resumo:
Objective: The aim of this study was to investigate the associations among measured physical fitness, perceived fitness, intention towards future physical activity and self-reported physical activity through junior high school years. Methods: Study participants included 122 Finnish students who were 13 years old during Grade 7. The sample was comprised of 80 girls and 42 boys from 3 junior high schools (Grades 7-9). During the autumn semester of Grade 7, students completed fitness tests and a questionnaire analyzing self-perception of their physical fitness. The questionnaire delivered at Grade 8 included intention towards future physical activity. At Grade 9 students’ self-reported physical activity levels. Results: Structural Equation Modeling revealed an indirect path from physical fitness to self-reported physical activity via perceived physical fitness and intention towards future physical activity. The model also demonstrated a correlation between perceived physical fitness and physical activity. Squared multiple correlations revealed that perceived physical fitness explained 33 % of the actual physical fitness. Conclusions: The results of this study highlight the role of physical and cognitive variables in the process of adoption of physical activity in adolescence.
Resumo:
Adolescents are indeed bothered by the complexities of the present and future and are concerned with making sense out of the multiple demands of parents, teachers, and peers while trying to develop identities as autonomous individuals. In this confused world, contemporary school science does not fit their view of desirable world as evident in the findings of the ROSE study. However, there are bright spots where teachers, community, parents and youth do engage with STEM. This paper will report on initiatives drawn from a decade of research in schools that have attempted to reconcile the interests of youth and the contemporary world of science. The aim is to identify those factors that do stimulate student interest. These case studies were conducted generally using both qualitative and quantitative data and findings analysed in terms of program outcomes and student engagement. The key finding is that the formation of relationships and partnerships in which students have high degree of autonomy and sense of responsibility is paramount to positive dispositions towards STEM. The findings raise some hope that innovative schools and partnerships can foster innovation and connect youth with the real world.
Resumo:
This chapter charts the theories and methods being adopted in an investigation of the 'micro-politics' of teacher education policy reception at a site of higher education in Queensland from 1980 to 1990. The paper combines insights and methods from critical ethnography with those from the institutional ethnography of feminist sociologist Dorothy Smith to link local policy activity at the institutional site to broader social structures and processes. In this way, enquiry begins with--and takes into account--the experiences of those groups normally excluded from mainstream and even critical policy analysis.