962 resultados para Phospho-C-Jun Ser 63 and 73 Activation
Resumo:
Collagen XVIII can generate two fragments, NC11-728 containing a frizzled motif which possibly acts in Wnt signaling and Endostatin, which is cleaved from the NC1 and is a potent inhibitor of angiogenesis. Collagen XVIII and Wnt signaling have recently been associated with adipogenic differentiation and obesity in some animal models, but not in humans. In the present report, we have shown that COL18A1 expression increases during human adipogenic differentiation. We also tested if polymorphisms in the Frizzled (c.1136C>T; Thr379Met) and Endostatin (c.4349G>A; Asp1437Asn) regions contribute towards susceptibility to obesity in patients with type 2 diabetes (113 obese, BMI =30; 232 non-obese, BMI < 30) of European ancestry. No evidence of association was observed between the allele c.4349G>A and obesity, but we observed a significantly higher frequency of homozygotes c.1136TT in obese (19.5%) than in non-obese individuals (10.9%) [P = 0.02; OR = 2.0 (95%CI: 1.07-3.73)], suggesting that the allele c.1136T is associated to obesity in a recessive model. This genotype, after controlling for cholesterol, LDL cholesterol, and triglycerides, was independently associated with obesity (P = 0.048), and increases the chance of obesity in 2.8 times. Therefore, our data suggest the involvement of collagen XVIII in human adipogenesis and susceptibility to obesity.
Resumo:
The present work shows study of the CO(2) capture by amidines DBN and PMDBD using (13)C solid-state NMR and thermal techniques. The solid state (13)C NMR analyses demonstrate the formation of a single PMDBD-CO(2) product which was assigned to stable bicarbonate. In the case of DBN, it is shown that two DBN-CO(2) products are formed, which are suggested to be stable bicarbonate and unstable carbamate. The role of water in the DBN-CO(2) capture as well as the stability of the products to environmental moisture was also investigated. The results suggest that the carbamate formation is favored in dry DBN, but in the presence of water it decompose to form bicarbonate. Thermal analysis shows a good gravimetric CO(2) absorption of DBN. Release of CO(2) was found to be almost quantitative from the PMDBDH(+) bicarbonate about 110 degrees C.
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
Establishment of long-term potentiation (LTP) at perforant path synapses is highly correlated with increased expression of Egr and AP-1 transcription factors in rat dentate gyrus granule cells. We have investigated whether increased transcription factor levels are reflected in increased transcription factor activity by assessing Egr and AP-I DNA binding activity using gel shift assays. LTP produced an increase in binding to the Egr element, which was NMDA receptor-dependent and correlated closely with our previously reported increase in Egr-1 (zif/268) protein levels. Supershift analysis confirmed involvement of Egr-1, but not Egr-2 in the DNA binding activity. AP-1 DNA binding was also rapidly elevated in parallel with protein levels, however, the peak increase in activity was delayed until 4 h, a time point when we have previously shown that only jun-D protein was elevated. These data indicate that binding of Egr-1 and AP-1 to their response elements is increased in two phases. This may result in activation of distinct banks of target genes which contribute to the establishment of persistent LTP. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Menstrual cycles of 30 patients with juvenile systemic lupus erythematosus (JSLE) were compared with 30 age-matched controls. The mean age of patients with JSLE and controls was similar (17.4 +/- 3.2 vs 17.06 +/- 2.08 years, P = 0.66). The mean menarche age was higher in JSLE than controls (13.13 +/- 1.4 vs 11.56 +/- 1.5 years, P = 0.0008). On the contrary, the mean maternal menarche age was similar in both groups (P = 0.62). Menstrual abnormalities and longer length cycles were more frequently observed in JSLE than controls (63% vs 10%, P = 0.0001; 23% vs 0%, P = 0.0105, respectively). The median of follicle stimulating hormone was significantly higher in patients with JSLE compared with controls (4.6 vs 3.4 IU/L, P = 0.0207), and the median of progesterone was lower (32.5 vs 70 ng/mL, P = 0.0033). The median Of luteinizing hormone was lower in patients with JSLE with menstrual abnormalities versus normal cycles (2.9 vs 5.5 IU/L, P = 0.019) and both had a high percentage of decreased progesterone levels (63% vs 73%, P = 0.70). Our findings support the notion that menstrual disturbances are frequent and may be associated with pituitary dysfunction leading to a decreased progesterone production. We also reported that in spite of premature ovarian failure being a rare event in JSLE the follicular reserve seems to be low regardless of intravenous cyclophosphamide treatment. Lupus (2009) 18, 38-43.
Resumo:
Various members of the bZip and bHLH-Zip families of eukaryotic transcription factors, including Jun, Fos, and Myc, have been identified as oncoproteins; mutation or deregulated expression of these proteins leads to certain types of cancer. These proteins can only bind to their cognate DNA enhancer sites following homodimerization, or heterodimerization with another family member, via their leucine zipper domain. Thus, a novel anticancer strategy would be to inhibit dimerization of these proteins, thereby blocking their DNA binding and transactivation functions. In this paper we show that it is possible to rationally design leucine zipper peptides that bind with high affinity to the leucine zipper dimerization domains of c-Jun and c-Fos, thus preventing the formation of functional c-Jun homodimers and c-Jun:c-Fos heterodimers; we refer to such peptides as superzippers (SZs). In vivo, c-Jun:SZ and c-Fos:SZ heterodimers should be nonfunctional as they lack one of the two basic domains that are essential for DNA binding. While the transport of a peptidic agent into cells often poses a severe obstacle to its therapeutic use, we show that a 46-residue leucine zipper peptide can be transported into HeLa cells by coupling it to a 17-residue carrier peptide from the Antennapedia homeodomain, thus paving the way for detailed studies of the therapeutic potential of superzipper peptides.
Resumo:
PURPOSE: To evaluate topography-guided photorefractive keratectomy (PRK) for correcting hyperopia and astigmatism after radial keratotomy (RK). METHODS., Prospective study of 12 consecutive patients (19 eyes) who were treated with topography-guided PRK with 0.02% mitomycin C using an Asclepion-Meditec MEL-70 excimer laser with a 9.5-mm ablation zone. All eyes were operated by the same surgeon and followed for 1 year. RESULTS: Thirteen eyes had complete epithelialization by day 7 and all eyes by day 10. At 1 year, uncorrected visual acuity was 20/25 or better in 42.1% of eyes and 20/40 or better in 68.4%. Preoperative mean spherical equivalent refraction was +3.80 +/- 2.47 diopters (D) and +0.24 +/- 2.36 D (P <.001) 1 year postoperative, with 47.4% of eyes being within +/- 1.00 D and 73.7% within +/- 2.00 D. Preoperative mean cylinder was -2.30 +/- 1.41 D and -0.62 +/- 0.73 D (P <.1001) 1 year postoperative. At 1 year, 68.4% of eyes gained at least 1 line of best-spectacle corrected visual acuity, 36.8% gained more than 1 line, and only 2 eyes lost 1 line (one due to corneal haze). Three eyes developed central haze. Mean regression from 6 to 12 months in these 3 eyes was +1.83 D and in the remaining 16 eyes was -0.50 D. CONCLUSIONS: Topography-guided PRK with mitomycin C was safe and reasonably effective for the treatment of hyperopia after RK [J Refract Surg. 2008;24:911-922.]
Resumo:
Infection with GB virus C (GBV-C) or hepatitis G virus (HGV) is highly prevalent among HIV/AIDS patients. GBV-C/HGV viremia has not been associated with liver disease and seems to slow HIV disease progression. To study the GBV-C/HGV genotypes prevalence among HIV/AIDS patients and its association with HIV viral load (VL) and CD4+ lymphocyte counts. From February 2003 to February 2004, we analyzed 210 HIV-1-infected subjects who were on anti-retroviral therapy (ART). For 63 of them a PCR-nested to the non-coding 5` (5`NCR) region of the GBV-C/HGV was done, and for 49 a DNA direct sequencing was done. A phylogenetic analysis was performed by PHYLIP program. 63(30%) of the HIV-1-infected patients were co-infected with GBV-C/HGV. The phylogenetic analysis revealed the following genotypes (and respective relative frequencies): 1(10%), 2a (41%), 2b (43%), and 3 (6%). Co-infected patients presented lower HIV-1 VL and higher T CD4+ lymphocyte cells counts as compared with patients negative for GBV-C/HGV sequences (log = 4.52 vs. 4.71, p = 0.036), and T CD4+ lymphocyte counts (cells/mm(3) = 322.6 vs. 273.5, p = 0.081, respectively). T CD4+ cells counts equal to, or higher than, 200/mm(3) were significantly more common among co-infected patients than among HIV-infected-only patients (p = 0.042). The lowest T CD4+ cells counts were associated with genotype 1 and the highest with genotype 2b (p = 0.05). The GBV-C/HGV infection prevalence was 30% among HIV-1-infected subjects, and was associated with lower VL and higher CD4+ lymphocyte counts. GBV-C/HGV genotype 2b may be associated with better immunological response. Published by Elsevier B.V.
Resumo:
The PrP(C) is expressed in several cell types but its physiological function is unknown. Some studies associate the PrP(C) with copper metabolism and the antioxidant activity of SOD. Our hypothesis was that changes in PrP(C) expression lead to abnormal copper regulation and induce SOD downregulation in the vascular wall. Objectives: to study whether the PrP(C) expression undergoes induction by agents that trigger endoplasmic reticulum stress (ERS) and, in this context, to evaluate the SOD activity. Methods: To trigger ERS, in vitro, rabbit aortic smooth muscle cells were challenged for 4, 8 and 18 hours, with angiotensin-II, tunicamycin and 7-ketocholesterol. For in vivo studies rabbit aortic arteries were subjected to injury by balloon catheter. Results: In vitro baseline SOD activity, determined through inhibition of cytochrome-c reduction, was 13.9 +/- 1.2 U/mg protein, angiotensin-II exposed for 8 hours produced an increase in SOD activity, and cellular copper concentration was about 9 times greater only under these conditions. Western blotting analysis for SOD isoenzymes showed an expression profile that was not correlated with the enzymatic activity. PrP(C) expression decreased after exposure to all agents after different incubation periods. RT-PCR assay showed increased mRNA expression for PrP(C) only in cells stimulated for 8 hours with the different stressors. The PrP(C) mRNA expression in rabbit aortic artery fragments, subjected to balloon catheter injury, showed a pronounced increase immediately after overdistension. The results obtained indicated a PrP(C) protection factor during the early part of the ERS exposure period, but did not demonstrate a SOD-like profile for the PrP(C). (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Objective - Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). Methods and Results - VSMCs from WKY rats were studied. At low concentrations (10(-10) mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone ( Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 ( inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src-dependent activation of NAD(P)H oxidase and c-Src-independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. Conclusions - Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src-independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.
Resumo:
Objective: To evaluate the efficacy and tolerability of a vaginal pessary containing 750 mg of metronidazole and 200 mg of miconazole nitrate used daily for 7 days in the treatment of vaginitis. Methods: Ninety-two women with vaginitis participated in this phase 3 study using one vaginal pessary daily for 7 days. Gynecological and microbiological evaluations were carried out prior to and following treatment. Results: Reductions occurred in symptoms and signs of vaginitis. Clinical cure rate was 87.7%, while the cure rates according to microscopy and Candida albicans culture were 81.8% and 73.9%, respectively. The cure rate for bacterial vaginosis was 75% and culture of Gardnerella vaginalis turned negative in 63.6% of cases following treatment. The medication was well tolerated. Conclusion: Use of a combination of 750 mg of metronidazole and 200 mg of miconazole in a single daily application was found to be effective in the treatment of the most common causes of vaginitis. (c) 2008 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control. (C) 2003 Wiley-Liss, Inc.
Resumo:
NOR-1/NR4A3 is an orphan member of the nuclear hormone receptor superfamily. NOR-1 and its close relatives Nurr1 and Nur77 are members of the NR4A subgroup of nuclear receptors. Members of the NR4A subgroup are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, T-cell apoptosis, chondrosarcomas, neurological disorders, inflammation, and atherogenesis. However, the mechanism of transcriptional activation, coactivator recruitment, and agonist-mediated activation remain obscure. Hence, we examined the molecular basis of NOR-1-mediated activation. We observed that NOR-1 trans-activates gene expression in a cell- and target-specific manner; moreover, it operates in an activation function (AF)-1-dependent manner. The N-terminal AF-1 domain delimited to between amino acids 1 and 112, preferentially recruits the steroid receptor coactivator (SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-terminal ligand binding domain (LBD). Homology modeling indicated that the NOR-1 LBD was substantially different from that of hRORbeta, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a very hydrophilic surface with a distinct topology. This observation may account for the inability of this nuclear receptor LBD to efficiently mediate cofactor recruitment and transcriptional activation. In contrast, the N-terminal AF-1 is necessary for cofactor recruitment and can independently conscript coactivators. Finally, we demonstrate that the purine anti-metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, activates NOR-1 in an AF-1-dependent manner. Additional 6-mercaptopurine analogs all efficiently activated NOR-1, suggesting that the signaling pathways that modulate proliferation via inhibition of de novo purine and/or nucleic acid biosynthesis are involved in the regulation NR4A activity. We hypothesize that the NR4A subgroup mediates the genotoxic stress response and suggest that this subgroup may function as sensors that respond to genotoxicity.
Resumo:
The obesity prevalence is increasing among the workforce of the developed countries. However, obesity seems to negatively affect the individuals’ work performance. In occupational contexts, manual lifting tasks are frequent and can produce significant muscle loading. With the aim of analysing the possible effect of obesity on workers’ muscular activation, surface electromyography data were collected from six muscles recruited during these tasks. In the current study, 6 different tasks of manual lifting (3 loads × 2 lifting styles) were performed by 14 participants with different obesity levels. Electromyography data normalization was based on the percentage of maximum contraction during each task. The muscles’ activation times before each task were also calculated. The current study suggests that obesity can increase the maximum contraction during each task and the delays on muscles’ activation time. This study suggests that obese individuals can present some changes on their muscle activation during lifting, when comparing with non-obese individuals, and reinforces the need to develop further studies focused on obesity as a risk factor for musculoskeletal disorders development.
Resumo:
Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano âgalvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against S.epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive \OCP\ value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 hours, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.