983 resultados para Periodic and chaotic motions
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
Resumo:
Saturn's F ring, which lies 3,400 km beyond the edge of the main ring system, was discovered by the Pioneer 11 spacecraft(1) in 1979. It is a narrow, eccentric ring which shows an unusual 'braided' appearance in several Voyager 1 images' obtained in 1980, although it appears more regular in images from Voyager 2 obtained nine months later(3). The discovery of the moons Pandora and Prometheus orbiting on either side of the ring provided a partial explanation for some of the observed features(4). Recent observations of Prometheus(5,6) by the Hubble Space Telescope show, surprisingly, that it is lagging behind its expected position by similar to 20 degrees. By modelling the dynamical evolution of the entire Prometheus-F ring-Pandora system, we show here that Prometheus probably encountered the core of the F ring in 1994 and that it may still be entering parts of the ring once per orbit. Collisions with objects in the F ring provide a plausible explanation for the observed lag and imply that the mass of the F ring is probably less than 25% that of Prometheus.
Resumo:
Structural and electronic properties of the bulk and relaxed surfaces (TiO2 and PbO terminated) of cubic PbTiO3 are investigated by means of periodic quantum-mechanical calculations based on density functional theory. It is observed that the difference in surface energies is small and relaxations effects are most prominent for Ti and Ph surface atoms. The electronic structure shows a splitting of the lowest conduction bands for the TiO2 terminated surface and of the highest valence bands for the PbO terminated slab. The calculated indirect band gap is: 3.18, 2.99 and 3.03 eV for bulk, TiO2 and PbO terminations, respectively. The electron density maps show that the Ti-O bond has a partial covalent character, whereas the Pb-O bonds present a very low covalency. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We study the two-photon propagation (TPP) modelling equations. The one-phase periodic solutions are obtained in an effective form. Their modulation is investigated by means of the Whitham method. The theory developed is applied to the problem of creation of TPP solitons on the sharp front of a long pulse.
Resumo:
The motion of a test particle in the vicinity of exterior resonances is examined in the context of the planar, circular, restricted three-body problem. The existence of asymmetric periodic orbits associated with the 1 : n resonances (where n = 2, 3, 4, 5) is confirmed; there is also evidence of asymmetric resonances associated with larger values of n. A detailed examination of the evolution of the family of orbits associated with the 1:2 resonance shows the sequence that leads to asymmetric libration. on the basis of numerical studies of the phase space it is concluded that the existence of asymmetric libration means that the region exterior to the perturbing mass is more chaotic than the interior region. The apparent absence of 'particles' in 1 : n resonances in the solar system may reflect this inherent bias.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that the mixmaster universe is nonchaotic with respect to the intrinsic time but chaotic with respect to the synchronous time. No appeal to any numerical simulation or other arguments are made, apart from the well known properties of the model. © 1991.
Resumo:
The motion of a test particle in the vicinity of exterior resonances is examined in the context of the planar, circular, restricted three-body problem. The existence of asymmetric periodic orbits associated with the 1 : n resonances (where n = 2, 3, 4, 5) is confirmed; there is also evidence of asymmetric resonances associated with larger values of n. A detailed examination of the evolution of the family of orbits associated with the 1:2 resonance shows the sequence that leads to asymmetric libration. On the basis of numerical studies of the phase space it is concluded that the existence of asymmetric libration means that the region exterior to the perturbing mass is more chaotic than the interior region. The apparent absence of 'particles' in 1 : n resonances in the solar system may reflect this inherent bias.
Resumo:
We model the heterogeneously catalyzed oxidation of CO over a Pt surface. A phase diagram analysis is used to probe the several steady state regimes and their stability. We incorporate an experimentally observed 'slow' sub-oxide kinetic step, thereby generalizing a previously presented model. In agreement with experimental data, stable, oscillatory and quasi-chaotic regimes are obtained. Furthermore, the inclusion of the sub-oxide step yields a relaxation oscillation regime. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.
Resumo:
In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
Resumo:
In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel.