913 resultados para Partial Least Squares
Resumo:
Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.
Resumo:
The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50μgcm(-2).
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The aim of this study was to test the hypothesis of differences in performance including differences in ST-T wave changes between healthy men and women submitted to an exercise stress test. Two hundred (45.4%) men and 241 (54.6%) women (mean age: 38.7 ± 11.0 years) were submitted to an exercise stress test. Physiologic and electrocardiographic variables were compared by the Student t-test and the chi-square test. To test the hypothesis of differences in ST-segment changes, data were ranked with functional models based on weighted least squares. To evaluate the influence of gender and age on the diagnosis of ST-segment abnormality, a logistic model was adjusted; P < 0.05 was considered to be significant. Rate-pressure product, duration of exercise and estimated functional capacity were higher in men (P < 0.05). Sixteen (6.7%) women and 9 (4.5%) men demonstrated ST-segment upslope ≥0.15 mV or downslope ≥0.10 mV; the difference was not statistically significant. Age increase of one year added 4% to the chance of upsloping of segment ST ≥0.15 mV or downsloping of segment ST ≥0.1 mV (P = 0.03; risk ratio = 1.040, 95% confidence interval (CI) = 1.002-1.080). Heart rate recovery was higher in women (P < 0.05). The chance of women showing an increase of systolic blood pressure ≤30 mmHg was 85% higher (P = 0.01; risk ratio = 1.85, 95%CI = 1.1-3.05). No significant difference in the frequency of ST-T wave changes was observed between men and women. Other differences may be related to different physical conditioning.
Resumo:
The concentration of 15 polycyclic aromatic hydrocarbons (PAHs) in 57 samples of distillates (cachaça, rum, whiskey, and alcohol fuel) has been determined by HPLC-Fluorescence detection. The quantitative analytical profile of PAHs treated by Partial Least Square - Discriminant Analysis (PLS-DA) provided a good classification of the studied spirits based on their PAHs content. Additionally, the classification of the sugar cane derivatives according to the harvest practice was obtained treating the analytical data by Linear Discriminant Analysis (LDA), using naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benz[b]fluoranthene, and benz[g,h,i]perylene, as a chemical descriptors.
Resumo:
One hundred fifteen cachaça samples derived from distillation in copper stills (73) or in stainless steels (42) were analyzed for thirty five itens by chromatography and inductively coupled plasma optical emission spectrometry. The analytical data were treated through Factor Analysis (FA), Partial Least Square Discriminant Analysis (PLS-DA) and Quadratic Discriminant Analysis (QDA). The FA explained 66.0% of the database variance. PLS-DA showed that it is possible to distinguish between the two groups of cachaças with 52.8% of the database variance. QDA was used to build up a classification model using acetaldehyde, ethyl carbamate, isobutyl alcohol, benzaldehyde, acetic acid and formaldehyde as chemical descriptors. The model presented 91.7% of accuracy on predicting the apparatus in which unknown samples were distilled.
Resumo:
Medium density fiberboard (MDF) is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC) bagasse to Eucalyptus wood in MDF panels using near infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least square (PLS) regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96) between the NIR-predicted and Lab-determined values and a low standard error of prediction (similar to 1.5%) in the cross-validations. A key role of resins (adhesives), cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.
Resumo:
Context. We present spectroscopic ground-based observations of the early Be star HD 49330 obtained simultaneously with the CoRoT-LRA1 run just before the burst observed in the CoRoT data. Aims. Ground-based spectroscopic observations of the early Be star HD 49330 obtained during the precursor phase and just before the start of an outburst allow us to disantangle stellar and circumstellar contributions and identify modes of stellar pulsations in this rapidly rotating star. Methods. Time series analysis (TSA) is performed on photospheric line profiles of He I and Si III by means of the least squares method. Results. We find two main frequencies f1 = 11.86 c d(-1) and f2 = 16.89 c d(-1) which can be associated with high order p-mode pulsations. We also detect a frequency f3 = 1.51 c d(-1) which can be associated with a low order g-mode. Moreover we show that the stellar line profile variability changed over the spectroscopic run. These results are in agreement with the results of the CoRoT data analysis, as shown in Huat et al. (2009). Conclusions. Our study of mid-and short-term spectroscopic variability allows the identification of p-and g-modes in HD 49330. It also allows us to display changes in the line profile variability before the start of an outburst. This brings new constraints for the seimic modelling of this star.
Resumo:
Context. The presence of pulsations in late-type Be stars is still a matter of controversy. It constitutes an important issue to establish the relationship between non-radial pulsations and the mass-loss mechanism in Be stars. Aims. To contribute to this discussion, we analyse the photometric time series of the B8IVe star HD 50 209 observed by the CoRoT mission in the seismology field. Methods. We use standard Fourier techniques and linear and non-linear least squares fitting methods to analyse the CoRoT light curve. In addition, we applied detailed modelling of high-resolution spectra to obtain the fundamental physical parameters of the star. Results. We have found four frequencies which correspond to gravity modes with azimuthal order m = 0,-1,-2,-3 with the same pulsational frequency in the co-rotating frame. We also found a rotational period with a frequency of 0.679 cd(-1) (7.754 mu Hz). Conclusions. HD 50 209 is a pulsating Be star as expected from its position in the HR diagram, close to the SPB instability strip.
Resumo:
The least squares collocation is a mathematical technique which is used in Geodesy for representation of the Earth's anomalous gravity field from heterogeneous data in type and precision. The use of this technique in the representation of the gravity field requires the statistical characteristics of data through covariance function. The covariances reflect the behavior of the gravity field, in magnitude and roughness. From the statistical point of view, the covariance function represents the statistical dependence among quantities of the gravity field at distinct points or, in other words, shows the tendency to have the same magnitude and the same sign. The determination of the covariance functions is necessary either to describe the behavior of the gravity field or to evaluate its functionals. This paper aims at presenting the results of a study on the plane and spherical covariance functions in determining gravimetric geoid models.
Resumo:
The title compound, C13H12N4O, crystallizes with two independent molecules in the asymmetric unit. The compound crystallizes as the ZE isomer, where Z and E refer to the configuration around the C=N and N-C bonds, respectively, with an N-H center dot center dot center dot N-py (py is pyridine) intramolecular hydrogen bond. The dihedral angles between the least-squares planes through the semicarbazone group and the pyridyl ring are 22.70 (9) and 27.26 (9)degrees for the two molecules. There are intermolecular N-H center dot center dot center dot O hydrogen bonds.
Resumo:
Three new bimetallic oxamato-based magnets with the proligand 4,5-dimethyl-1,2-phenylenebis-(oxamato) (dmopba) were synthesized using water or dimethylsulfoxide (DMSO) as solvents. Single crystal X-ray diffraction provided structures for two of them: [MnCu(dmopba)(H(2)O)(3)]n center dot 4nH(2)O (1) and [MnCu(dmopba)(DMSO)(3)](n center dot)nDMSO (2). The crystalline structures for both 1 and 2 consist of linearly ordered oxamato-bridged Mn(II)Cu(II) bimetallic chains. The magnetic characterization revealed a typical behaviour of ferrimagnetic chains for 1 and 2. Least-squares fits of the experimental magnetic data performed in the 300-20 K temperature range led to J(MnCu) = -27.9 cm(-1), g(Cu) = 2.09 and g(Mn) = 1.98 for 1 and J(MnCu) = -30.5 cm(-1), g(Cu) = 2.09 and g(Mn) = 2.02 for 2 (H = -J(MnCu)Sigma S(Mn, i)(S(Cu, i) + S(Cu, i-1))). The two-dimensional ferrimagnetic system [Me(4)N](2n){Co(2)[Cu(dmopba)](3)}center dot 4nDMSO center dot nH(2)O (3) was prepared by reaction of Co(II) ions and an excess of [Cu(dmopba)](2-) in DMSO. The study of the temperature dependence of the magnetic susceptibility as well as the temperature and field dependences of the magnetization revealed a cluster glass-like behaviour for 3.
Resumo:
This article analyzes the Brazilian political system from the local perspective. Following Cox (1997), we review the problems with electoral coordination that emerge from a given institutional framework. Due to the characteristics of the Brazilian Federal system and its electoral rules, linkage between the three levels of government is not guaranteed a priori, but demands a coordinating effort by the parties' leadership. According to our hypothesis, the parties are capable of coordinating their election strategies at different levels in the party system. Regression models based on two-stage least squares (2SLS) and TOBIT, analyzing a panel of Brazilian municipalities with data from the 1994 and 2000 elections, show that the proportion of votes received by a party in a given election correlates closely with its previous votes in majoritarian elections. Despite institutional incentives, the Brazilian party system shows evidence that it is organized nationally to the extent that it links the competition for votes at the three levels of government (National, State, and Municipal).
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.