971 resultados para Ocean bottom--Canada.
Resumo:
Seven sites were drilled during Ocean Drilling Program Leg 177 in the Atlantic sector of the Southern Ocean (SO) on a transect over the Antarctic Circumpolar Current from the Subantarctic to the Antarctic Zone. At four sites sediments were recovered with a Pliocene/Pleistocene sediment package of up to 580 m allowing the refinement of previous diatom zonation concepts. Samples were analyzed on stratigraphic distribution and abundance of diatom species. A refined diatom biozonation tied to the geomagnetic polarity record is proposed. For the middle and late Pleistocene two zonations applicable to the northern and southern area of the SO were constructed, considering different latitudinal distributions of biostratigraphic diatom marker species. The southern zonation for the Pleistocene relies on the occurrence of species of the genus Rouxia, R. leventerae and R. constricta n. sp. as well as on a revised last occurrence datum (LOD) of Actinocyclus ingens (0.38 Ma, late marine isotope stage (MIS) 11). The use of these new stratigraphic marker species refines the temporal resolution for biostratigraphic age assignment to up to 0.1 Myr. In particular the LOD of R. leventerae as an indicator for the MIS 6/5 boundary (Termination II) will improve future dating of carbonate-free Antarctic sediments. These new data were obtained from sediments of Sites 1093 and 1094 (Antarctic Zone). The northern zonation for the middle and late Pleistocene time interval is based on the Pleistocene abundance pattern of Hemidiscus karstenii which was already proposed by previous investigations (e.g. Gersonde and Barcena, 1998). One new species (R. constricta) and two new combinations (Fragilariopsis clementia, Fragilariopsis reinholdii) are proposed in this study.
Resumo:
Deep Sea Drilling Project Site 563, located on the west flank of the northern Mid-Atlantic Ridge, recovered a long Miocene section from which magnetostratigraphic and isotopic stratigraphy are available. Quantitative analyses of calcareous nannofossil assemblages have been performed in the Lower and Middle Miocene sediments from Site 563. The abundance patterns of the identified species allow us to determine several bioevents for this time interval. The recognized biohorizons, related to the available magnetostratigraphy, provide new data on the biostratigraphic value of many species and on the synchroneity of the events over a wide geographic area. Relations with the oxygen isotope stratigraphy are also reported. Sphenolith distribution is examined in particular detail due to their biostratigraphic importance in the Early Miocene. In particular the recently described species Sphenolithus procerus, Sphenolithus tintinnabulum and Sphenolithus multispinatus can be useful to subdivide the Lower Miocene zones NN2 and NN3. A large variety of Reticulofenestra pseudoumbilicus has been identified within zones NN6 and NN7.
Resumo:
This paper presents data on geographic and geologic conditions of modern sedimentation in the Lake Untersee, the largest lake in the East Antarctica. Geochemical and sedimentation data indicate that the leading mechanism supplying aluminosilicate sedimentary material to the surface layer of bottom sediments is seasonal melting of the Anuchin glacier and the mountain glacier on the southeastern part of the valley hosting the lake. Strongly reduced conditions in the lowermost 25 m of the water column in the smaller of two depressions of the lake bottom were favorable for enrichment of the bottom sediments in bacteriogenic organic matter, Mo, Au, and Pd. H2S-contaminated water results to significant enrichment of the sediments only in redox-sensitive elements that are able to migrate in anionic complexes and precipitate (co-precipitate) as sulfides.
Resumo:
Along three sections in the Kara Sea and Obskaya Guba concentrations of dissolved and particulate organic carbon (DOC and POC, respectively) in waters , as well as of organic carbon in bottom sediments (Corg) in September-October 2007 were determined. DOC varied from 6.3 to 2400 µg/l, POC - from 0.84 to 12.2 mg/l. For all samples the average DOC was 200 µg/l (n = 78; sigma = 368), the average POC - 2.7 mg/l (n = 92; sigma = 2.7). Concentrations of Corg in dried samples of upper layer bottom sediments varied from 0.13 to 2.10% (aver. = 0.9%; n = 21; sigma = 0.49%). It is shown that distribution of different forms of organic matter (OM) is an indicator of supply and scattering of particulate matter in the Kara Sea and that DOC and POC of the Kara Sea are formed under impact of runoff of the Ob and Yenisei Rivers. It is found that distribution of OM in bottom sediments is closely related to their grain size composition and to the structure of currents in the area. Variations in Corg concentration in bottom sediment cores from the zone of riverine and sea water mixing represent variability of OM burial.
Resumo:
A down-core 231Pa/230Th record has been measured from the southwestern Indian Ocean to reconstruct the history of deep water flow into this basin over the last glacial-interglacial cycle. The (231Paxs/230Thxs)0 ratio throughout the record is nearly constant at approximately 0.055, significantly lower than the production ratio of 0.093, indicating that the proxy is sensitive to changes in circulation and/or sediment flux at this site. The consistent value suggests that there has been no change in the inflow of Antarctic Bottom Water to the Indian Ocean during the last 140 ka, in contrast to the changes in deep circulation thought to occur in other ocean basins. The stability of the (231Paxs/230Thxs)0 value in the record contrasts with an existing sortable silt (SS) record from the same core. The observed equation image variability is attributed to a local geostrophic effect amplifying small changes in circulation. A record of authigenic U from the same core suggests that there was reduced oxygen in bottom waters at the core locality during glacial periods. The consistency of the (231Paxs/230Thxs)0 record implies that this could not have arisen by local changes in productivity, thus suggesting a far-field control: either globally reduced bottom water oxygenation or increased productivity south of the Opal Belt during glacials.
Resumo:
Integrated Ocean Drilling Program (IODP) Expedition 302 (Arctic Coring Expedition, ACEX) recovered a unique sediment record from the central Arctic Ocean, revealing that this region underwent major environmental fluctuations since the Late Cretaceous. Major and trace element composition of 1,300 samples were determined using X-ray fluorescence (XRF). The results show significant compositional variability of the sediments with depth that can be attributed to changes in (a) provenance and pathways of detrital material, (b) paleoenvironmental conditions and depositional processes, and (c) diagenetic overprint of the primary record. In addition to existing lithological units, we introduce new geochemical units for a more process-related approach interpreting the ACEX record. In detail, via the geochemical signature of Siberian flood basalts we are able to reconstruct the discontinuous rifting and deepening of the central Lomonosov Ridge during the Paleogene, accompanied by changing current regimes and the onset of sea ice. Eocene biosiliceous sedimentation took place in a relatively shallow setting under predominantly anoxic bottom water conditions, causing a positive anoxia-productivity feedback, although water column stratification was repeatedly interrupted by ventilation events. Anoxic to sulfidic conditions were even more extreme after biosilica production ceased, and significant amounts of pyrite were deposited on the Lomonosov Ridge. Especially in organic matter-rich Paleogene deposits, diagenetic processes obscured the paleoenvironmental signals. Fundamental environmental changes occurred in the Middle Eocene, but geochemical and micropaleontological proxies point not to the identical sediment depth. After approximately 26 Ma of non-deposition or erosion, the Middle Miocene record shows the transition to dominantly oxic bottom water conditions, although suboxic diagenesis seemingly affected these deposits.
Resumo:
The isotopic composition of Nd in present-day deep waters of the central and northeastern Atlantic Ocean is thought to fingerprint mixing of North Atlantic Deep Water with Antarctic Bottom Water. The central Atlantic Romanche and Vema Fracture Zones are considered the most important pathways for deep water exchange between the western and eastern Atlantic basins today. We present new Nd isotope records of the deepwater evolution in the fracture zones obtained from ferromanganese crusts, which are inconsistent with simple water mass mixing alone prior to 3 Ma and require additional inputs from other sources. The new Pb isotope time series from the fracture zones are inexplicable by simple mixing of North Atlantic Deep Water and Antarctic Bottom Water for the entire past 33 Myr. The distinct and relatively invariable Nd and Pb isotope records of deep waters in the fracture zones appear instead to have been controlled to a large extent by contributions from Saharan dust and the Orinoco/Amazon Rivers. Thus the previously observed similarity of Nd and Pb isotope time series from the western and eastern North Atlantic basins is better explainable by direct supply of Labrador Seawater to the eastern basin via a northern pathway rather than by advection of North Atlantic Deep Water via the Romanche and Vema Fracture Zones.
Resumo:
Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C/m**2/d respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0°C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C/m**2/d, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.