943 resultados para Numerical solutions of ODE’s
Resumo:
We numerically investigate the long-term dynamics of the Saturnian system by analyzing the Fourier spectra of ensembles of orbits taken around the current orbits of Mimas, Enceladus, Tethys, Rhea and Hyperion. We construct dynamical maps around the current position of these satellites in their respective phase spaces. The maps are the result of a great deal of numerical simulations where we adopt dense sets of initial conditions and different satellite configurations. Several structures associated to the current two-body mean-motion resonances, unstable regions associated to close approaches between the satellites, and three-body mean-motion resonances in the system, are identified in the map. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
A new class of accelerating, exact, explicit and simple solutions of relativistic hydrodynamics is presented. Since these new solutions yield a finite rapidity distribution, they lead to an advanced estimate of the initial energy density and life-time of high energy heavy ion collisions. Accelerating solutions are also given for spherical expansions in arbitrary number of spatial dimensions.
Resumo:
Flavonoid compounds were analyzed in ripe fruit pulp of ten species of Coffea, including two cultivars of C. arabica and two of C. canephora. Three coefficients of similarity: Simple-Matching, Jaccard and Ochiai and three different clustering methods, Single Linkage, Complete Linkage and Unweighted Pair Group, Using Arithmetic Averages (UPGMA), were used to analyze the data.Jaccard and Ochiai's coefficients of association showed a more coherent result, when compared with taxonomic and hybridization studies. Inclusion of Psilanthopsis kapakata in the genus Coffea, as C. kapakata, is justified by the similarity of this species with other studied species, and clusters clearly approximate the species C. arabica and C. eugenioides. The latter is one of the possible parents of the allotetraploid species C. arabica, C. congensis is the only species whose position remains ambiguous, probably due to the fact that the plants of this species that were introduced into the Campinas collections, were hybrids and not typical of C. congensis.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
A simple mathematical model is developed to explain the appearance of oscillations in the dispersal of larvae from the food source in experimental populations of certain species of blowflies. The life history of the immature stage in these flies, and in a number of other insects, is a system with two populations, one of larvae dispersing on the soil and the other of larvae that burrow in the soil to pupate. The observed oscillations in the horizontal distribution of buried pupae at the end of the dispersal process are hypothesized to be a consequence of larval crowding at a given point in the pupation substrate. It is assumed that dispersing larvae are capable of perceiving variations in density of larvae buried at a given point in the substrate of pupation, and that pupal density may influence pupation of dispersing larvae. The assumed interaction between dispersing larvae and the larvae that are burrowing to pupate is modeled using the concept of non-local effects. Numerical solutions of integro-partial differential equations developed to model density-dependent immature dispersal demonstrate that variation in the parameter that governs the non-local interaction between dispersing and buried larvae induces oscillations in the final horizontal distribution of pupae. (C) 1997 Academic Press Limited.
A combined wavelet-element free Galerkin method for numerical calculations of electromagnetic fields
Resumo:
A combined wavelet-element free Galerkin (EFG) method is proposed for solving electromagnetic EM) field problems. The bridging scales are used to preserve the consistency and linear independence properties of the entire bases. A detailed description of the development of the discrete model and its numerical implementations is given to facilitate the reader to. understand the proposed algorithm. A numerical example to validate the proposed method is also reported.
Resumo:
Given the ever-increasing scale of structures discovered in the universe, we solve Einstein's equations numerically, under simplifying assumptions, to examine how this lack of uniformity affects the metric of Einstein-de Sitter cosmology. The results confirm the qualitative conclusion of Barrow, that a large density contrast is compatible with much smaller metric perturbations. The contribution of this peculiar gravity to the redshift might complicate studies of peculiar motions of galaxies, although it appears that the distortion is small for nearby clusters.
Resumo:
A numerical study of propagation of a particle through a one-dimensional dissipative medium is presented. The medium is composed of several dissipative sections, which are characterized by their friction coefficients eta. In particular, we have considered two types of friction coefficients distributed orderly or disorderly along the chain. For the same relative proportion of the coefficients, we have found that transport can be enhanced in the disordered distribution in comparison with the ordered one. We also show how this can be considered an approximated way to treat the propagation in a dissipative medium with a position-dependent friction coefficient.
Resumo:
The method of the fourth-order cumulant of Challa, Landau, and Binder is used together with the Monte Carlo histogram technique of Ferrenberg and Swendsen to study the order of the phase transitions of two-dimensional Ising systems with multispin interactions in the horizontal direction and two-body interactions in the vertical direction.