993 resultados para Numerical Solutions
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
[1] We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.
Resumo:
[1] The physical conditions required to provide for the tectonic stability of cratonic crust and for the relative longevity of deep cratonic lithosphere within a dynamic, convecting mantle are explored through a suite of numerical simulations. The simulations allow chemically distinct continents to reside within the upper thermal boundary layer of a thermally convecting mantle layer. A rheologic formulation, which models both brittle and ductile behavior, is incorporated to allow for plate-like behavior and the associated subduction of oceanic lithosphere. Several mechanisms that may stabilize cratons are considered. The two most often invoked mechanisms, chemical buoyancy and/or high viscosity of cratonic root material, are found to be relatively ineffective if cratons come into contact with subduction zones. High root viscosity can provide for stability and longevity but only within a thick root limit in which the thickness of chemically distinct, high-viscosity cratonic lithosphere exceeds the thickness of old oceanic lithosphere by at least a factor of 2. This end-member implies a very thick mechanical lithosphere for cratons. A high brittle yield stress for cratonic lithosphere as a whole, relative to oceanic lithosphere, is found to be an effective and robust means for providing stability and lithospheric longevity. This mode does not require exceedingly deep strength within cratons. A high yield stress for only the crustal or mantle component of the cratonic lithosphere is found to be less effective as detachment zones can then form at the crust-mantle interface which decreases the longevity potential of cratonic roots. The degree of yield stress variations between cratonic and oceanic lithosphere required for stability and longevity can be decreased if cratons are bordered by continental lithosphere that has a relatively low yield stress, i.e., mobile belts. Simulations that combine all the mechanisms can lead to crustal stability and deep root longevity for model cratons over several mantle overturn times, but the dominant stabilizing factor remains a relatively high brittle yield stress for cratonic lithosphere.
Resumo:
Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.
Resumo:
We study the existence of asymptotically almost periodic classical solutions for a class of abstract neutral integro-differential equation with unbounded delay. A concrete application to partial neutral integro-differential equations which arise in the study of heat conduction in fading memory material is considered. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A bounded continuous function it u : [0, infinity) -> X is said to be S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. This paper is devoted to study the existence and qualitative properties of S-asymptotically omega-periodic mild solutions for some classes of abstract neutral functional differential equations with infinite delay, Furthermore, applications to partial differential equations are given.
Resumo:
The photochemical behavior of nitrosyl complexes Ru(salen)(NO)(OH(2))(+) and Ru(salen)(NO) Cl (salen = N, N`-ethylenebis-(salicylideneiminato) dianion) in aqueous solution is described. Irradiation with light in the 350-450 nm range resulted in nitric oxide (NO) release from both. For Ru(salen)(NO) Cl secondary photoreactions also resulted in chloride aquation. Thus, in both cases the final photoproduct is the diaquo cation Ru(III) (salen) (OH(2))(2)(+), for which pK(a)`s of 5.9 and 9.1 were determined for the coordinated waters. The pK(a) of the Ru(salen)(NO)(OH(2))+ cation was also determined as 4.5 +/- 0.1, and the relative acidities of these ruthenium aquo units are discussed in the context of the bonding interactions between Ru(III) and NO. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.
Resumo:
We study the existence of global solutions for a class of abstract neutral differential equation defined on the whole real axis. Some concrete applications related to ordinary and partial differential equations are considered. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the existence of solutions on the whole of R for a class of impulsive abstract differential equations. An application to partial differential equations is presented. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with the existence of mild solutions for a class of impulsive functional differential equations of the neutral type associated with the family of linear closed (not necessarily bounded) operators {A(t) : t is an element of 1}. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The paper establishes the existence and uniqueness of asymptotically almost automorphic mild solution to an abstract partial neutral integro-differential equation with unbounded delay. An example is given to illustrate our results. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work we study the existence and uniqueness of pseudo-almost periodic solutions for a first-order abstract functional differential equation with a linear part dominated by a Hille-Yosida type operator with a non-dense domain. (C) 2009 Published by Elsevier Ltd
Resumo:
We establish existence of mild solutions for a class of abstract second-order partial neutral functional differential equations with unbounded delay in a Banach space.
Resumo:
The paper considers the existence and uniqueness of almost automorphic mild solutions to some classes of first-order partial neutral functional-differential equations. Sufficient conditions for the existence and uniqueness of almost automorphic mild solutions to the above-mentioned equations are obtained. As an application, a first-order boundary value problem arising in control systems is considered. (C) 2007 Elsevier Ltd. All fights reserved.