991 resultados para NH4 -N
Resumo:
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3-N), ammonium (NH4-N), nitrite (NO2-N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3-N+NH4-N+NO2-N), SRP and DRSi were 131.6, 1.2 and 155.6 mu M, respectively. The maximum Chl a concentration was 19.5 mg m(-3) in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 mu M and from 0.4 to 0.95 mu M, respectively. From 1963 to 2004, N:P ratios also increased from 30-40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m(-3), nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l(-1), much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.
Resumo:
Rates of respiration and excretion of the Pacific oyster, Crassostrea gigas, were measured seasonally from June 2002 to July 2003 under ambient conditions of food, water temperature, pH, and salinity in Sanggou Bay, an important mariculture coast in north China. The aim of this study is to obtain fundamental data for further establishing an energy budget model and assessing the carrying capacity for cultivation of C. gigas in north China. Oysters were collected monthly or bimonthly from the integrated culture areas of bivalve and kelp in the bay. Oxygen consumption and ammonium and phosphorus excretion rates were measured, and ratios of O/N and NIP were calculated. One-way ANOVA was applied to determine differences among these parameters that act as a function of seasonal variation. All the physiological parameters yielded highly significant variations with season (P<0.01) The rate of respiration varied seasonally, with the highest oxygen consumption rate in July and the lowest rate in January, ranging from 0.07 to 2.13 mg O-2 h(-1) g(-1) dry tissue weight (DW). Maximum and minimum ammonium excretion rates were recorded in August and January, respectively, ranging from 0.51 to 5.40 mu mol NH4-N h(-1) g(-1) DW. Rates of phosphorus excretion varied from 0.11 (in January) to 0.64 (in July) mu mol PO4-P h(-1) g(-1) DW. The O/N and N/P ratios changed from 9.2 (in January) to 59.8 (in July) and from 4.6 (in January) to 10.9 (in August), respectively. For each season, the allometric relationship between the physiological response (e.g., rate of oxygen consumption, ammonium and phosphorus excretion) and DW of the animal was estimated using the formula: Y=a x DWb. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Temporal and spatial variability in the kinetic parameters of uptake of nitrate (NO3-), ammonium (NH4+), urea, and glycine was measured during dinoflagellate blooms in Changjiang River estuary and East China Sea coast, 2005. Karenia mikimotoi was the dominant species in the early stage of the blooms and was succeeded by Prorocentrum donghaiense. The uptake of nitrogen (N) was determined using N-15 tracer techniques. The results of comparison kinetic parameters with ambient nutrients confirmed that different N forms were preferentially taken up during different stages of the bloom. NO3- (V-max 0.044 h(-1); K-s 60.8 mu M-N) was an important N source before it was depleted. NH4+ (V-max 0.049 h(-1); K-s 2.15 mu M-N) was generally the preferred N. Between the 2 organic N sources, urea was more preferred when K. mikimotoi dominated the bloom (V-max 0.020 h(-1); K-s 1.35 mu M-N) and glycine, considered as a dominant amino acid, was more preferred when P. donghaiense dominated the bloom (V-max 0.025 h(-1); K-s 1.76 mu M-N). The change of N uptake preference by the bloom-forming algae was also related to the variation in ambient N concentrations. Published by Elsevier B.V.
Resumo:
In this study, radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum (R. esculentum) was assayed including superoxide anion radical and hydroxyl radical scavenging. The protein samples showed strong scavenging activity on superoxide anion radical and values EC50 of full protein (FP), first fraction (IFF), second fraction (SF), and 30% (NH4)(2)SO4 precipitate (Fr-1) were 2.65, 7.28, 1.10, and 22.51 mu g/mL, respectively, while values EC50 of BHA, BHT, and alpha-tocopherol were 31, 6 1, and 88 pg/mL, respectively. Also, the protein samples had strong scavenging effect on hydroxyl radical and the values EC50 of FP, FF, SF, Fr-1, and Fr-2 were 48.91, 27.72, 1.82, 16.36, and 160.93 mu g/mL, but values EC50 of Vc and mannitol were 1907 and 4536 mu g/mL, respectively. Of the five protein samples, SF had the strongest radical scavenging activity and may have a use as a possible supplement in the food and pharmaceutical industries. The radical scavenging activity was stable at high temperature so that R. esculentum may be used as a kind of natural functional food. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this study, hemolytic activity of venom from the jellyfish Rhopilema esculentum Kishinouye and some factors affecting it were assayed. The HU50 of R. esculentum full venom (RFV) against chicken erythrocytes was 3.40 mu g/ml and a Hill coefficient value was 1.73 suggesting at least two molecules participated in hemolytic activity. The hemolytic activity of RFV was affected by some chemical and physical factors such as divalent cations, EDTA, (NH4)(2)SO4, pH and temperature. In the presence of Mg2+, Cu2+, Zn2+, Fe2+, Ca2+ ( >= 2 mM), Mn2+ (>= 1 mM), EDTA (>= 2 mM) and (NH4)(2)SO4, the hemolytic activity of RFV was reduced. RFV had strong hemolytic activity at the pH 6-10 and the hemolytic ratios were 0.95-1.19. Hemolytic activity was temperature-sensitive and when RFV was pre-incubated at temperatures over 40 degrees C, it was sharply reduced. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Seasonal investigations of size-fractionated biomass and production were carried out from February 1992 to May 1993 in Jiaozhou Bay, China. Microplankton assemblages were separated into three fractions: pico-(0.7-2 mu m), nano- (2-20 mu m) and netplankton (20-200 mu m). The biomass was measured as chlorophyll a (Chl a), particulate organic carbon (POC) and particulate organic nitrogen (PON). The production was determined by C-14 and N-15 tracer techniques. The seasonal patterns in biomass, though variable, were characterized by higher values in spring and lower values in autumn and summer (for Chl a only). The seasonal patterns in production, on the other hand, were more clear with higher values occurring in summer and spring, and lower values occurring in autumn and winter. Averaged over the whole study period, the respective proportions of total biomass accounted for by net-, nano- and picoplankton were 26, 45 and 29% for Chl a, 32, 33 and 35% for POC, and 26, 32 and 42% for PON. The contributions to total primary production by net-, nano- and picoplankton were 31, 35 and 34%, respectively. The respective proportions of total NH4+-N uptake accounted for by net-, nano- and picoplankton were 28, 33 and 39% in the daytime, and 10, 29 and 61% at night. The respective contributions to total NO3--N uptake by net-, nano- and picoplankton were 37, 40 and 23% in the daytime, and 13, 23 and 64% at night. Some comprehensive ratios, including C/N biomass ratio, Chl a/C ratio, C uptake/Chl a ratio, C:N uptake ratio and the f-ratio, were also calculated size separately, and their biological and ecological meanings are discussed.
Resumo:
An HPLC-UV-MS method for simultaneous identification of predominant phenolics and minor nucleoside derivatives in Gastrodia elata was developed, which was based on their UV and MS characteristics summarized through a series of homemade reference standard experiments. Phenolics showed characteristic UV lambda(max) at 267 nm, [M + NH4](+) base peak in positive mode and [M - H](-) base peak in negative mode while nucleosides exhibited UV lambda(max) at 255 nm, [M + H](+), [M - H + 2H(2)O](-) or [M - H + CH3COOH](-). Phenolics conjugates mainly underwent the consecutive loss of gastrodin residue (- 268 U) and the combined loss of H2O and CO2 from the citric acid unit under negative MS/MS conditions whereas nucleosides simply lost the ribose (- 132 U) under positive MS/MS conditions. According to these characteristics, a special pattern under MS/MS conditions and reported compound data for G. elata in the literature, not only 15 phenolics were identified but also 6 nucleoside derivatives were identified. Among these compounds, seven phenolics and three nucleoside derivatives have not been reported yet from G. elata.
Resumo:
Grazing animal excrement plays an important role in nutrient cycling and redistribution in grazing ecosystems, due to grazing in large areas and return in small areas. To elucidate the changes to the soil and pasture caused by sheep urine, fresh dung, and compost patches, a short- term field experiment using artificially placed pats was set up in the autumn of 2003 in the Inner Mongolian steppe. Urine application significantly increased soil pH during the first 32 days in soil layers at depths of both 0 - 5 cm and 5 - 15 cm. Rapid hydrolysis of urea gave large amounts of urine- nitrogen ( N) as ammonium ( NH4+) in soil extracts and was followed by apparent nitrification from day 2. Higher inorganic N content in the urine- treated soil was found throughout the experiment compared with the control. No significant effects of sheep excrement on soil microbial carbon ( C) and soil microbial N was found, but microbial activities significantly increased compared with the control after application of sheep excrement. Forty- six percent of dung- N and 27% of compost- N were transferred into vegetation after the experiment. The results from this study suggest that large amounts of nutrients have been lost from the returned excrement patches in the degraded grassland of Inner Mongolia, especially from sheep urine- N.
Resumo:
Azadirachtin (Az), as a botanical insecticide, is relatively safe and biodegradable. It affects a wide vaariety of biological processes, including the reduction of feeding, suspension of molting, death of larvae and pupae, and sterility of emerged adults in a dose-dependent manner. However, the mode of action of this toxin remains obscure. By using ion chromatography, we analyzed changes in six inorganic cation (Li+, Na+, NH4+, K+, Mg2+, and Ca2+) distributions of the whole body and hemolymph in Ostrinia furnacalis (G.) after exposure to sublethal doses of Az. The results showed that Az dramatically interfered with Na+, NH4+, K+, Mg2+, and Ca2+ distributions in hemolymph of O. furnacalis (G.) and concentrations of these five cations dramatically increased. However, in the whole body, the levels of K+, Mg2+, and Ca2+ significantly, decreased after exposure to Az, except that Na+ and NH4+ remained constant. Li+ was undetected in both the control and treated groups in the whole body and hemolymph. It is suggested that Az exerts its insecticidal effects on O. furnacalis (G.) by interfering with the inorganic cation distributions related to ion channels.
Resumo:
贵州茂兰喀斯特原始森林地区25个雨水样品的化学组成研究表明,该区雨水的pH值为4.4~7.2,平均为5.1。雨水样品富NH4^+、Ca^2+和SO4^2-、C1^-。NH4^+是最主要的阳离子,平均值为56.8/μmol/L,占阳离子组成的26%~74%,Ca^2+次之,平均值为14.8μmol/L,NHg和Ca^2+之和占了阳离子组成的71%~94%,SO4^2-是最主要的阴离子,平均值为39.2μmol/L,占了阴离子组成的69%~91%,CI一次之,平均值为9.5μmol/L。SO4^2-和C1-占了阴离子组成的71%~96%。与中国其他地区的雨水样品相比,茂兰地区雨水离子含量要低1~2个数量级;物质来源分析表明茂兰地区雨水中溶质主要来源于自然过程的输入,人为活动输入可以忽略不计.
Resumo:
土壤中的铵态氮(NH4+)是土壤中最重要的一种活性氮的形态之一:不仅是植物可以直接吸收利用的氮素营养,也是土壤氮素气态损失的共同的源--NH3挥发和硝化反硝化释放的NO2均是从NH4+开始。
Resumo:
根据以往研究 ,选取了 2个砷含量差异较大的样品 ,利用连续浸取实验 ,结合仪器中子活化分析 (INAA)、等离子原子吸收光谱 (ICP -AES)、等离子质谱 (ICP -MS)测定及X射线吸收精细结构 (XAFS)分析 ,经低温灰化 (LTA)、扫描电子显微镜 (SEM -EDX)对黔西南高砷煤中砷的赋存状态进行了研究 ,发现 5 0 %以上的砷不能被NH4 Ac、HCl、HF和HNO3 等无机试剂提取出来 ,结合以往的研究认为砷主要以高价有机砷的形式存在
Resumo:
对2004年大气降水样品监测资料的综合分析和研究表明,金华市降水样品pH值的分布范围在3.64~6.76之间,降水的酸雨率为79.3%。SO4^2-和NO3^-是降水中主要的阴离子,分别占降水中阴离子总量的66.1%和21.7%。NH4^+和Ca^2+是降水中含量最高的阳离子,分别占阴离子总量的56.6%和33.4%。降水中这些离子的浓度水平一般比世界上其它地方高,但大大低于国内的北方地区。由于降水中缺乏足够的中和物质,大约76%的降水酸度被NH4^+、Ca^2+和K^+等碱性成分中和。陆源型离子Ca^2+、Mg^2+和K^+以及海盐性离子Na^+和Cl^-之间存在明显的相关关系,另外Ca^2+和SO4^2-、Mg^2+和SO4^2-、Mg^2+和NO3^-以及Mg^2+和Cl^-之间也可以观察到比较好的相关关系。土壤和海水的富集系数表明,研究区域的Ca^2+和K+主要来源于岩石/土壤风化,SO4^2-和NO3^-主要归因于人为活动的影响。
Resumo:
研究区域降水样品pH值的分布范围为3.64-7.20,pH年均值为4.45。SO4、NO3、NH4、Ca、H是降水中主要的阴、阳离子。降水中SO4对降水酸度的贡献逐渐降低,而NO3的贡献则显著增加。SO4、NH4、Ca、H、NO3的沉降通量相对较大,其它离子则相对较小,同时降水离子成分沉降通量的季节变化非常明显。SO4和NO3、Ca和Mg以及Na和Cl表现出较好的相关关系,另外Ca和SO4、Mg和SO4以及Mg和NO3等酸、碱性离子之间也存在较好的相关性,但H与其它离子间并没有表现出明显的相关关系。降水中SO4、NH4、NO3和F主要来自人为活动的影响,Ca、k和Mg主要来自土壤、沙尘等地壳来源,Na、Cl属于典型的海盐性成分。 浙江中部地区大气降水硫同位素δ34S值的变化范围为+0.53‰-+14.23‰,平均值+5.04‰,区域内各地大气降水硫同位素组成基本一致。大气SO2的δ34S值变化范围在+0.95‰-+7.50‰之间,年均值为+4.73‰,气溶胶δ34S值变化范围则在+6.39‰-+9.83‰之间,年均值为+8.09‰。降水和大气SO2的δ34S值存在冬季高夏季低的季节性变化特征,同位素平衡分馏引起的温度效应和夏季生物成因硫的大量释放是造成季节性变化的主要控制因素。降水中人为来源硫的相对贡献约为53%-91%,年平均为73%,生物成因硫的相对贡献约为8%-44%,年平均为26%。远距离传输硫是研究区域降水中另一个非常重要的硫源,其相对贡献约为27%-44%。大气SO2氧化反应中多相氧化处于相对重要的地位,均相氧化在氧化反应机制中也有其不可低估的作用。研究区域大气环境的相对湿度对大气SO2的氧化机制有着重要的影响。
Resumo:
地下水数值模拟技术已成为评估人类活动对地下水质和量的影响、评价地下水资源、预测地下水污染发展趋势等的最主要的方法和手段。喀斯特含水层由于含水介质和地下水流场的非均质性和各向异性,对其进行地下水流的数值模拟一直是水文地质学界的难题。 遵义市地处我国西南喀斯特发育区,为贵州省第二大工业城市,属重度缺水地区,地下水资源的开发利用极大缓解了区内的缺水危机。但长期以来,由于对地下水资源的开发利用缺乏合理的统筹规划和强有力的管理,引发了一些环境地质问题,如地下水降落漏斗、岩溶塌陷、地下水质恶化等。因此选择遵义市进行地下水流和污染物运移数值模拟研究具有理论和实际意义。 通过ArcGIS平台建立了研究区的水文地质信息数据库,对研究区地下水的水位动态以及水化学特征做了简单分析。概要总结和阐述了高桥-河溪坝块段的自然地理、地质概况和水文地质条件,建立了水文地质概念模型;在水文地质概念模型的基础上,利用Groundwater Vistas软件建立了枯水期和丰水期的二维非均质各向异性稳定流模型,三维有限差分地下水流模拟程序MODFLOW用于模拟地下水水流,三维溶质运移模块MT3DMS用于模拟污染物在对流弥散情况下的迁移。根据分析和模拟结果可以得出如下几点结论: 1、基岩裂隙水水位峰值滞后大气降水峰值2~3个月,属渐峰型动态;岩溶水水位、地下河出口和泉流量变化步调与降水强度一致,对降水响应敏感。 2、对NH4+、NO3-、NO2-、SO42-、Mn五种组分含量进行了时空分析,结果表明地下水污染物的含量可能受人为活动输入物质的不均匀性和降雨等各方面因素控制,各组分每年的污染面积不一致,没有明显的规律性;受污染的一般是岩溶水,尤其是在石灰岩溶洞、地下河强烈发育而三废排放量大的居民集中地区面积较大。 3、为了有效地进行地下水资源管理,论文对高桥-河溪坝岩溶含水系统进行了一定的概化,将岩溶含水介质近似作为等价多孔介质(Equivalent Porous Media, EPM)模型来进行研究,采用MODFLOW的六个子程序模拟含水层系统的源汇项:降水子程序包RCH模拟降水入渗量、井流子程序包WEL模拟抽水量、通用水头子程序包GHB模拟侧向补给/排泄量、排水沟渠子程序包DRN模拟地下河出口流量、河流子程序包RIV模拟河流与地下水的交换量和已知水头边界子程序包CHD。从水位观测点和地下水位等势面两者结合来校正模型,结果表明能够达到相应国家标准规定的要求。因此EPM模型是可以适用于我国西南喀斯特地区的地下水流模拟的。 4、通过稳定流模型识别了枯水期和丰水期的渗透系数。在高桥和茅草铺附近渗透系数较高,枯水期介于100~400 m/d,而丰水期在高桥最高可达到3220m/d;其余单元渗透系数低于100 m/d,大多数小于10m/d。总体来说,由于丰水期含水层的饱水度大,渗透系数要高于枯水期。 5、通过地下水均衡计算,确定了各补给项和排泄项的水量。枯水期最重要的补给来源是研究区东北角的侧向补给量,占总补给量的70%,人工开采是最大的排泄项;丰水期最重要的补给源是西部的已知水头边界,占总补给量的49%,东北角的侧向补给量是第二补给源,占39%,地下河出口是最主要的排泄方式,达到排泄总量的74%。 6、对水文地质参数和源汇项敏感度分析的结果表明,不管是枯水期还是丰水期,对研究区水位影响最大的是渗透系数,外部源汇项中则是抽水量对地下水流形态的影响最大。 7、研究区岩溶地下水流速很大,污染物的运移是一个对流占绝对优势的问题,弥散的作用则相对很小。通过在茅草铺地区假设污染源,用MT3DMS程序模拟了地下水污染物在时间和空间上的迁移特征。结果发现:污染羽的形状和扩散方位主要受地下水流场的控制,而污染物的浓度与水量多少相关。