912 resultados para N doping


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical and optical properties of various free base and metallic phthalocyanine (Pc) doped glass matrix are reported for the first time. Absorption spectral measurements of H2Pc, MnPc, NiPc, CoPc, CuPc, MoOPc, ZnPc and FePc doped borate glass matrix have been made in the 200–1100 nm region and the spectra obtained are analyzed in the 2.1–6.2 eV region to obtain the optical band gap (Eg) and the width of the band tail (Et). Other important optical and physical parameters viz. refractive index (n), molar extinction coefficient ("), density (½), glass transition temperature (Tg), molecular concentration (N ), polaron radius (rp), intermolecular separation (R), molar refractivity (Rm) are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical and optical properties of various free base and metallic phthalocyanine (Pc) doped glass matrix are reported for the first time. Absorption spectral measurements of H2Pc, MnPc, NiPc, CoPc, CuPc, MoOPc, ZnPc and FePc doped borate glass matrix have been made in the 200–1100 nm region and the spectra obtained are analyzed in the 2.1–6.2 eV region to obtain the optical band gap (Eg) and the width of the band tail (Et). Other important optical and physical parameters viz. refractive index (n), molar extinction coefficient ("), density (½), glass transition temperature (Tg), molecular concentration (N ), polaron radius (rp), intermolecular separation (R), molar refractivity (Rm) are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal diffusivity of the composites of camphor sulphonic acid (CSA) doped polyaniline (PANI) and its composites with cobalt phthalocyanine (CoPc) has been measured using open cell photoacoustic technique. Analysis of the data shows that the effective thermal diffusivity value can be tuned by varying the relative volume fraction of the constituents. It is seen that polaron assisted heat transfer mechanism is dominant in CSA doped PANI and these composites exhibit a thermal diffusivity value which is intermediate to that of CSA doped PANI and CoPc. The results obtained are correlated with the electrical conductivity and hardness measurements carried out on the samples

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal diffusivity of the composites of camphor sulphonic acid (CSA) doped polyaniline (PANI) and its composites with cobalt phthalocyanine (CoPc) has been measured using open cell photoacoustic technique. Analysis of the data shows that the effective thermal diffusivity value can be tuned by varying the relative volume fraction of the constituents. It is seen that polaron assisted heat transfer mechanism is dominant in CSA doped PANI and these composites exhibit a thermal diffusivity value which is intermediate to that of CSA doped PANI and CoPc. The results obtained are correlated with the electrical conductivity and hardness measurements carried out on the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

National Institute for Interdisciplinary Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heterogeneous photocatalytic degradation of methylorange over TiO2 is studied and is found to be cost effective. Effect of Zirconium metal incorporation over titania system is investigated. Photocatalytic degradation of methylorange using solar radiation is found to be highly economical when compared with the processes using artificial UV radiation, which require substantial electrical power input. The characterization of titania as well as modified zirconium metal doped titania systems are done using XRD, FTIR and EDAX measurements. The catalytic activities of different systems are also compared and is tried to correlate with the crystallite size and presence of dopant metal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis deals with the preparation and dielectric characterization of Poly aniline and its analogues in ISM band frequency of 2-4 GHz that includes part of the microwave region (300 MHz to 300 GHz) of the electromagnetic spectrum and an initial dielectric study in the high frequency [O.05MHz-13 MHz]. PolyaniIine has been synthesized by an in situ doping reaction under different temperature and in the presence of inorganic dopants such as HCl H2S04, HN03, HCl04 and organic dopants such as camphorsulphonic acid [CSA], toluenesulphonic acid {TSA) and naphthalenesulphonic acid [NSA]. The variation in dielectric properties with change in reaction temperature, dopants and frequency has been studied. The effect of codopants and microemulsions on the dielectric properties has also been studied in the ISM band. The ISM band of frequencies (2-4 GHz) is of great utility in Industrial, Scientific and Medical (ISM) applications. Microwave heating is a very efficient method of heating dielectric materials and is extensively used in industrial as well as household heating applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrical conductivity and thermal diffusivity of pristine and iodine doped vanadyl naphthalocyanine (VONc) were studied. In the pristine sample, the temperature dependence was very weak below 300 K. The increase in conductivity at higher temperature must be due to an enhancement in carrier density with increase in thermal energy. The electrical conductivity of VONc increased when doped with iodine. The behavior of VONcI indicated that considerable changes have occurred in the electronic environment of the molecule as a result of doping. Iodine doping enhanced the thermal diffusivity of VONc. The increase in thermal diffusivity of the iodine doped sample may be due to the disorder of iodine atoms occupying the channels in one dimensional lattices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An open cell photoacoustic configuration has been employed to evaluate the thermal diffusivity of pure InP as well as InP doped with sulphur and iron. Chopped optical radiation at 488 nm from an Ar-ion laser has been used to excite photoacoustic signals which been detected by a sensitive electret microphone. Thermal diffusivity value have been calculated from phase versus chopping frequency plots. Doped sample are found to show a reduced value for thermal diffusivity in comparison with intrinsically pure sample. The results have been interpreted in terms of the mechanisms of heat generation and transmission in semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents in detail. the theoretical developments and calculations which are used for the simultaneous determination of thermal parameters, namely thermal diffusivity (a). thermal effusivity (e), thermal conductivity (K) and heat capacity (cr ) employing photopyroelectric technique. In our calculations. we have assumed that the pyroelectric detector is supported on a copper backing. so that there will be sufficient heat exchange between the heated pyroelectric detector and the backing so that the signal fluctuations are reduced to a minimum. Since the PPE signal depends on the properties of the detector that are also temperature dependent. a careful temperature calibration of the system need to be carried out. APPE cell has been fabricated for the measurements that can be used to measure the thermal properties of solid samples from ~ 90 K to ~ 350 K. The cell has been calibrated using standard samples and the accuracy of the technique is found to be of the order of± 1%.In this thesis, we have taken up work n photopyroelectric investigation of thermal parameters of ferroelectric crystals such as Glycine phosphite (NH3CH2COOH3P03), Triglycine sulfate and Thiourea as well as mixed valence perovskites samples such as Lead doped Lanthanum Manganate (Lal_xPb~Mn03) Calcium doped (Lal_xCaxMnOJ) and Nickel doped Lanthanum Stroncium Cobaltate (Lao~Sro5Ni,Col_x03).The three ferroelectric crystals are prepared by the slow evaporation technique and the mixed valence perovskites by solid state reaction technique.Mixed valence perovskites, with the general formula RI_xA~Mn03 (R = La. Nd or Pr and A = Ba, Ca, Sr or Pb) have been materials of intense experimental and theoretical studies over the past few years. These materials show . colossal magneloresis/ance' (CMR) in samples with 0.2 < x < 0.5 in such a doping region, resistivity exhibits a peak at T = T p' the metal - insulator transition temperature. The system exhibits metallic characteristics with d %T > Oabove Tp (wherep is the resistivity) and insulating characteristics with d % T < 0 above T p. Despite intensive investigations on the CMR phenomena and associated electrical properties. not much work has been done on the variation of thermal properties of these samples. We have been quite successful in finding out the nature of anomaly associated with thermal properties when the sample undergoes M-I transition.The ferroelectric crystal showing para-ferroelectric phase transitions - Glycine phosphite. Thiourea and Triglycine sulfate - are studied in detail in order to see how well the PPE technique enables one to measure the thermal parameters during phase transitions. It is seen that the phase transition gets clearly reflected in the variation of thermal parameters. The anisotropy in thermal transport along different crystallographic directions are explained in terms of the elastic anisotropy and lattice contribution to the thermal conductivity. Interesting new results have been obtained on the above samples and are presented in three different chapters of the thesis.In summary. we have carried investigations of the variations of the thermal parameters during phase transitions employing photopyroelectric technique. The results obtained on different systems are important not only in understanding the physics behind the transitions but also in establishing the potentiality of the PPE tool. The full potential of PPE technique for the investigation of optical and thermal properties of materials still remains to be taken advantage of by workers in this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An open-cell configuration of the photoacoustic (PA) technique is employed to determine the thermal and transport properties of intrinsic Si and Si doped with B (p-type) and P (n-type). The experimentally obtained phase of the PA signal under heat transmission configuration is fitted to that of theoretical model by taking thermal and transport properties, namely, thermal diffusivity, diffusion coefficient, and surface recombination velocity, as adjustable parameters. It is seen from the analysis that doping and also the nature of dopant have a strong influence on the thermal and transport properties of semiconductors. The results are interpreted in terms of the carrier-assisted and phonon-assisted heat transfer mechanisms in semiconductors as well as the various scattering processes occurring in the propagation of heat carriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.