977 resultados para Multiple solutions
Resumo:
An efficient numerical method to compute nonlinear solutions for two-dimensional steady free-surface flow over an arbitrary channel bottom topography is presented. The approach is based on a boundary integral equation technique which is similar to that of Vanden-Broeck's (1996, J. Fluid Mech., 330, 339-347). The typical approach for this problem is to prescribe the shape of the channel bottom topography, with the free-surface being provided as part of the solution. Here we take an inverse approach and prescribe the shape of the free-surface a priori while solving for the corresponding bottom topography. We show how this inverse approach is particularly useful when studying topographies that give rise to wave-free solutions, allowing us to easily classify eleven basic flow types. Finally, the inverse approach is also adapted to calculate a distribution of pressure on the free-surface, given the free-surface shape itself.
Resumo:
A whole-genome scan was conducted to map quantitative trait loci (QTL) for BSE resistance or susceptibility. Cows from four half-sib families were included and 173 microsatellite markers were used to construct a 2835-cM (Kosambi) linkage map covering 29 autosomes and the pseudoautosomal region of the sex chromosome. Interval mapping by linear regression was applied and extended to a multiple-QTL analysis approach that used identified QTL on other chromosomes as cofactors to increase mapping power. In the multiple-QTL analysis, two genome-wide significant QTL (BTA17 and X/Y ps) and four genome-wide suggestive QTL (BTA1, 6, 13, and 19) were revealed. The QTL identified here using linkage analysis do not overlap with regions previously identified using TDT analysis. One factor that may explain the disparity between the results is that a more extensive data set was used in the present study. Furthermore, methodological differences between TDT and linkage analyses may affect the power of these approaches.
Resumo:
A new deterministic method for predicting simultaneous inbreeding coefficients at three and four loci is presented. The method involves calculating the conditional probability of IBD (identical by descent) at one locus given IBD at other loci, and multiplying this probability by the prior probability of the latter loci being simultaneously IBD. The conditional probability is obtained applying a novel regression model, and the prior probability from the theory of digenic measures of Weir and Cockerham. The model was validated for a finite monoecious population mating at random, with a constant effective population size, and with or without selfing, and also for an infinite population with a constant intermediate proportion of selfing. We assumed discrete generations. Deterministic predictions were very accurate when compared with simulation results, and robust to alternative forms of implementation. These simultaneous inbreeding coefficients were more sensitive to changes in effective population size than in marker spacing. Extensions to predict simultaneous inbreeding coefficients at more than four loci are now possible.
Resumo:
An increased interest in utilising groups of Unmanned Aerial Vehicles (UAVs) with heterogeneous capabilities and autonomy is presenting the challenge to effectively manage such during missions and operations. This has been the focus of research in recent years, moving from a traditional UAV management paradigm of n-to-1 (n operators for one UAV, with n being at least two operators) toward 1-to-n (one operator, multiple UAVs). This paper has expanded on the authors’ previous work on UAV functional capability framework, by incorporating the concept of Functional Level of Autonomy (F-LOA) with two configurations: The lower F-LOA configuration contains sufficient information for the operator to generate solutions and make decisions to address perturbation events. Alternatively, the higher F-LOA configuration presents information reflecting on the F-LOA of the UAV, allowing the operator to interpret solutions and decisions generated autonomously, and decide whether to veto from this decision.
Resumo:
This investigation has shown that by transforming free caustic in red mud (RM) to Bayer hydrotalcite (during the seawater neutralization (SWN) process) enables a more controlled release mechanism for the neutralization of acid sulfate soils. The formation of hydrotalcite has been confirmed by X-ray diffraction (XRD) and differential thermalgravimetric analysis (DTG), while the dissolution of hydrotalcite and sodalite has been observed through XRD, DTG, pH plots, and ICP-OES. Coupling of all techniques enabled three neutralization mechanisms to be determined: (1) free alkali, (2) hydrotalcite dissolution, and (3) sodalite dissolution. The mechanisms are determined on the basis of ICP-OES and kinetic information. When the mass of RM or SWN-RM is greater than 0.08 g/50 mL, the pH of solution increases to a suitable value for plant life with aluminum leaching kept at a minimum. To obtain a neutralization pH greater than 6 in 10 min, the following ratio of bauxite residue (g) in 50 mL with a known iron sulfate (Fe2(SO4)3) concentration can be determined as follows: 0.04 g:50 mL:0.1 g/L of Fe2(SO4)3.
Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions
Resumo:
Pretreatment of sugarcane bagasse with acidified aqueous glycerol solution was evaluated at both laboratory and pilot scales. Laboratory scale pretreatment (4.00 g dry mass in 40.00 g liquid) with glycerol solutions containing ≤ 20 wt% water and 1.2 wt% HCl at 130 °C for 60 min resulted in biomass having glucan digestibilities of ≥ 88%. Comparable glucan enzymatic digestibility of 90% was achieved with bagasse pretreated at pilot scale (10 kg dry mass in 60 kg liquid) using a glycerol solution containing 0.4 wt% HCl and 17 wt% water at 130 °C for 15 min. We attribute more efficient pretreatment at pilot scale (despite shorter reaction time and reduced acid content) to improved mixing and heat transfer in a horizontal reactor. Pretreatment of sugarcane bagasse with acid-catalysed glycerol solutions likely produces glycerol-glycosides, which together with hydrolysed lignin are potential substrates for the production of biopolymers.
Resumo:
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
Fouling of industrial surfaces by silica and calcium oxalate can be detrimental to a number of process streams. Solution chemistry plays a large roll in the rate and type of scale formed on industrial surfaces. This study is on the kinetics and thermodynamics of SiO2 and calcium oxalate composite formation in solutions containing Mg2+ ions, trans-aconitic acid and sucrose, to mimic factory sugar cane juices. The induction time (ti) of silicic acid polymerization is found to be dependent on the sucrose concentration and SiO2 supersaturation ratio (SS). Generalized kinetic and solubility models are developed for SiO2 and calcium oxalate in binary systems using response surface methodology. The role of sucrose, Mg, trans-aconitic acid, a mixture of Mg and trans-aconitic acid, SiO2 SS ratio and Ca in the formation of com- posites is explained using the solution properties of these species including their ability to form complexes.
Resumo:
Background: Ureaplasma species are the most prevalent isolates from women who deliver preterm. The MBA, a surface exposed lipoprotein, is a key virulence factor of ureaplasmas. We investigated MBA variation after chronic and acute intra-amniotic (IA) ureaplasma infections. Method: U. parvum serovar 3 (2x104 colony-forming-units) was injected IA into pregnant ewes at: 55 days gestation (d, term = 145d) (n=8); 117d (n=8) and 121d (n=8). Fetuses were delivered surgically (124d) and ureaplasmas cultured from amniotic fluid (AF), chorioamnion, fetal lung (FL) and umbilical cord were tested by western blot and PCR assays to demonstrate MBA and mba gene variation respectively. Tissue sections were sectioned and stained by haemotoxylin and eosin and inflammatory cell counts and pathology were reported (blinded to outcome). Results: Numerous MBA/mba variants were generated in vivo after chronic exposure to ureaplasma infection but after acute infection no variants (3d) or very few variants (7d) were generated. Identical MBA variants were detected within the AF and FL but different ureaplasma variants were detected within chorioamnion specimens. The severity of inflammation within chronically infected tissues varied between animals ranging from no inflammation to severe inflammation with/without fibrosis. Chorioamnion, FL and cord from the same animal demonstrated the same degree of inflammation. Conclusions: MBA/mba variation in vivo occurred after the initiation of the host immune response and we propose that ureaplasmas vary the MBA antigen to evade the host immune response. In some animals there was no inflammation despite colonisation with high numbers of ureaplasmas.
Resumo:
Ureaplasma species are the microorganisms most frequently associated with adverse pregnancy outcomes. The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a key virulence factor of ureaplasmas. The MBA demonstrates size variation, which we have shown previously to be correlated with the severity of chorioamnion inflammation. We aimed to investigate U. parvum serovar 3 pathogenesis in vivo, using a sheep model, by investigating: MBA variation after long term (chronic) and short term (acute) durations of in utero ureaplasma infections, and the severity of chorioamnionitis and inflammation in other fetal tissues. Inocula of 2x107 colony-forming-units (CFU) of U. parvum serovar 3 (Up) or media controls (C) were injected intra-amniotically into pregnant ewes at one of three time points: day 55 (69d Up, n=8; C69, n=4); day 117 (7d Up, n=8; C7, n=2); and day 121 (3d Up, n=8; C3, n=2) of gestation (term=145-150d). At day 124, preterm fetuses were delivered surgically. Samples of chorioamnion, fetal lung, and umbilical cord were: (i) snap frozen for subsequent ureaplasma culture, and (ii) fixed, embedded, sectioned and stained by haematoxylin and eosin stain for histological analysis. Selected fetal lung clinical ureaplasma isolates were cloned and filtered to obtain cultures from a single CFU. Passage 1 and clone 2 ureaplasma cultures were tested by western blot to demonstrate MBA variation. In acute durations of ureaplasma infection no MBA variants (3d Up) or very few MBA variants (7d Up) were present when compared to the original inoculum. However, numerous MBA size variants were generated in vivo (alike within contiguous tissues, amniotic fluid and fetal lung, but different variants were present within chorioamnion), during chronic, 69d exposure to ureaplasma infection. For the first time we have shown that the degree of ureaplasma MBA variation in vivo increased with the duration of gestation.
Resumo:
Background: Intra-amniotic infection accounts for 30% of all preterm births (PTB), with the human Ureaplasma species being the most frequently identified microorganism from the placentas of women who deliver preterm. The highest prevalence of PTB occurs late preterm (32-36 weeks) but no studies have investigated the role of infectious aetiologies associated with late preterm birth. Method: Placentas from women with late PTB were dissected aseptically and samples of chorioamnion tissue and membrane swabs were collected. These were tested for Ureaplasma spp. and aerobic/anaerobic bacteria by culture and real-time PCR. Western blot was used to assess MBA variation in ureaplasma clinical isolates. The presence of microorganisms was correlated with histological chorioamnionitis. Results: Ureaplasma spp. were isolated from 33/466 (7%) of placentas by culture or PCR. The presence of ureaplasmas, but not other microorganisms, was associated with histological chorioamnionitis (21/33 ureaplasma-positive vs. 8/42 other bacteria; p= 0.001). Ureaplasma clinical isolates demonstrating no MBA variation were associated with histological chorioamnionitis. By contrast, ureaplasmas displaying MBA variation were isolated from placentas with no significant histological chorioamnionitis (p= 0.001). Conclusion: Ureaplasma spp. within placentas delivered late preterm (7%) is associated with histological chorioamnionitis (p = 0.001). Decreased inflammation within chorioamnion was observed when the clinical ureaplasma isolates demonstrated variation of their surface-exposed lipoproteins (MBA). This variation may be a mechanism by which ureaplasmas modulate and evade the host immune response. So whilst ureaplasmas are present intra-amniotically they are not suspected because of the normal macroscopic appearance of the placentas and the amniotic fluid.
Resumo:
This work experimentally examines the performance benefits of a regional CORS network to the GPS orbit and clock solutions for supporting real-time Precise Point Positioning (PPP). The regionally enhanced GPS precise orbit solutions are derived from a global evenly distributed CORS network added with a densely distributed network in Australia and New Zealand. A series of computational schemes for different network configurations are adopted in the GAMIT-GLOBK and PANDA data processing. The precise GPS orbit results show that the regionally enhanced solutions achieve the overall orbit improvements with respect to the solutions derived from the global network only. Additionally, the orbital differences over GPS satellite arcs that are visible by any of the five Australia-wide CORS stations show a higher percentage of overall improvements compared to the satellite arcs that are not visible from these stations. The regional GPS clock and Uncalibrated Phase Delay (UPD) products are derived using the PANDA real time processing module from Australian CORS networks of 35 and 79 stations respectively. Analysis of PANDA kinematic PPP and kinematic PPP-AR solutions show certain overall improvements in the positioning performance from a denser network configuration after solution convergence. However, the clock and UPD enhancement on kinematic PPP solutions is marginal. It is suggested that other factors, such as effects of ionosphere, incorrectly fixed ambiguities, may be the more dominating, deserving further research attentions.
Resumo:
We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.