956 resultados para Models for count data


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Archaeozoological mortality profiles have been used to infer site-specific subsistence strategies. There is however no common agreement on the best way to present these profiles and confidence intervals around age class proportions. In order to deal with these issues, we propose the use of the Dirichlet distribution and present a new approach to perform age-at-death multivariate graphical comparisons. We demonstrate the efficiency of this approach using domestic sheep/goat dental remains from 10 Cardial sites (Early Neolithic) located in South France and the Iberian Peninsula. We show that the Dirichlet distribution in age-at-death analysis can be used: (i) to generate Bayesian credible intervals around each age class of a mortality profile, even when not all age classes are observed; and (ii) to create 95% kernel density contours around each age-at-death frequency distribution when multiple sites are compared using correspondence analysis. The statistical procedure we present is applicable to the analysis of any categorical count data and particularly well-suited to archaeological data (e.g. potsherds, arrow heads) where sample sizes are typically small.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper focuses on two basic issues: the anxiety-generating nature of the interpreting task and the relevance of interpreter trainees’ academic self-concept. The first has already been acknowledged, although not extensively researched, in several papers, and the second has only been mentioned briefly in interpreting literature. This study seeks to examine the relationship between the anxiety and academic self-concept constructs among interpreter trainees. An adapted version of the Foreign Language Anxiety Scale (Horwitz et al., 1986), the Academic Autoconcept Scale (Schmidt, Messoulam & Molina, 2008) and a background information questionnaire were used to collect data. Students’ t-Test analysis results indicated that female students reported experiencing significantly higher levels of anxiety than male students. No significant gender difference in self-concept levels was found. Correlation analysis results suggested, on the one hand, that younger would-be interpreters suffered from higher anxiety levels and students with higher marks tended to have lower anxiety levels; and, on the other hand, that younger students had lower self-concept levels and higher-ability students held higher self-concept levels. In addition, the results revealed that students with higher anxiety levels tended to have lower self-concept levels. Based on these findings, recommendations for interpreting pedagogy are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern manufacturing systems should satisfy emerging needs related to sustainable development. The design of sustainable manufacturing systems can be valuably supported by simulation, traditionally employed mainly for time and cost reduction. In this paper, a multi-purpose digital simulation approach is proposed to deal with sustainable manufacturing systems design through Discrete Event Simulation (DES) and 3D digital human modelling. DES models integrated with data on power consumption of the manufacturing equipment are utilized to simulate different scenarios with the aim to improve productivity as well as energy efficiency, avoiding resource and energy waste. 3D simulation based on digital human modelling is employed to assess human factors issues related to ergonomics and safety of manufacturing systems. The approach is implemented for the sustainability enhancement of a real manufacturing cell of the aerospace industry, automated by robotic deburring. Alternative scenarios are proposed and simulated, obtaining a significant improvement in terms of energy efficiency (−87%) for the new deburring cell, and a reduction of energy consumption around −69% for the coordinate measuring machine, with high potential annual energy cost savings and increased energy efficiency. Moreover, the simulation-based ergonomic assessment of human operator postures allows 25% improvement of the workcell ergonomic index.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to investigate the relationship between the entrepreneurship and the incidence of bureaucratic corruption in the states of Brazil and Federal District. The main hypothesis of this study is that the opening of a business in Brazilian states is negatively affected by the incidence of corruption. The theoretical reference is divided into Entrepreneurship and bureaucratic corruption, with an emphasis on materialistic perspective (objectivist) of entrepreneurship and the effects of bureaucratic corruption on entrepreneurial activity. By the regression method with panel data, we estimated the models with pooled data and fixed and random effects. To measure corruption, I used the General Index of Corruption for the Brazilian states (BOLL, 2010), and to represent entrepreneurship, firm entry per capita by state. Tests (Chow, Hausman and Breusch-Pagan) indicate that the random effects model is more appropriate, and the preliminary results indicate a positive impact of bureaucratic corruption on entrepreneurial activity, contradicting the hypothesis expected and found in previous articles to Brazil, and corroborating the proposition of Dreher and Gassebner (2011) that, in countries with high regulation, bureaucratic corruption can be grease in the wheels of entrepreneurship

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) nanoparticles with different sizes and crystalloid structures produced by the thermal method and doped with silver iodide (AgI), nitrogen (N), sulphur (S) and carbon (C) were applied as adsorbents. The adsorption of Methyl Violet (MV), Methylene Blue (MB), Methyl Orange (MO) and Orange II on the surface of these particles was studied. The photocatalytic activity of some particles for the destruction of MV and Orange II was evaluated under sunlight and visible light. The equilibrium adsorption data were fitted to the Langmuir, Freundlich, Langmuir-Freundlich and Temkin isotherms. The equilibrium data show that TiO2 particles with larger sizes and doped with AgI, N, S and C have the highest adsorption capacity for the dyes. The kinetic data followed the pseudo-first order and pseudo-second order models, while desorption data fitted the zero order, first order and second order models. The highest adsorption rate constant was observed for the TiO2 with the highest anatase phase percentage. Factors such as anatase crystalloid structure, particle size and doping with AgI affect the photocatalytic activity significantly. Increasing the rutile phase percentage also decreases the tendency to desorption for N-TiO2 and S-TiO2. Adsorption was not found to be important in the photocatalytic decomposition of MV in an investigation with differently sized AgI-TiO2 nanoparticles. Nevertheless C-TiO2 was found to have higher adsorption activity onto Orange II, as the adsorption role of carbon approached synchronicity with the oxidation role.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho realizou-se na Refinaria de Sines e teve como principal objectivo a utilização de ferramentas oriundas da Área Científica da Inteligência Artificial no desenvolvimento de modelos de previsão da classificação da Água Residual Industrial de acordo com a Legislação em vigor, com vista à minimização dos impactes ambientais e das tarifas aplicadas pela Concessionária (Águas de Santo André) à Refinaria. Actualmente a avaliação da qualidade do efluente é realizada através de métodos analíticos após colheita de uma amostra do efluente final. Esta abordagem é muito restritiva já que não permite actuar sobre o efluente em questão pois apenas pode evitar que, no futuro, uma mistura semelhante volte a ser refinada. Devido a estas limitações, o desenvolvimento de modelos de previsão baseados em Data Mining mostrou ser uma alternativa para uma questão pró-activa da qualidade dos efluentes que pode contribuir decisivamente para o cumprimento das metas definidas pela Empresa. No decurso do trabalho, foram desenvolvidos dois modelos de previsão da qualidade do efluente industrial com desempenhos muito semelhantes. Um deles utiliza a composição das misturas processadas e o outro, utiliza informações relativas ao crude predominante na mistura. ABSTRACT; This study has taken place at the Sines Refinery and its main objective is the use of Artificial Intelligence tools for the development of predictive models to classify industrial residual waters according with the Portuguese Law, based on the characteristics of the mixtures of crude oil that arrive into the Refinery to be processed, to minimize the Environmental impacts and the application of taxes. Currently, the evaluation of the quality of effluent is performed by analytical methods after harvesting a sample of the final effluent. This approach is very restrictive since it does not act on the intended effluent; it can only avoid that in the future a similar mixture is refined. Duet these limitations, the development of forecasting models based on Data Mining has proved to be an alternative on the important issue which is the quality of effluent, which may contribute to the achievement of targets set by the Company. During this study, two models were developed to predict the quality of industrial effluents with very similar performances. One uses the composition of processed mixtures and the other uses information regarding the predominant oil in the mixture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of chemical control measures to reduce the impact of parasite and pest species has frequently resulted in the development of resistance. Thus, resistance management has become a key concern in human and veterinary medicine, and in agricultural production. Although it is known that factors such as gene flow between susceptible and resistant populations, drug type, application methods, and costs of resistance can affect the rate of resistance evolution, less is known about the impacts of density-dependent eco-evolutionary processes that could be altered by drug-induced mortality. The overall aim of this thesis was to take an experimental evolution approach to assess how life history traits respond to drug selection, using a free-living dioecious worm (Caenorhabditis remanei) as a model. In Chapter 2, I defined the relationship between C. remanei survival and Ivermectin dose over a range of concentrations, in order to control the intensity of selection used in the selection experiment described in Chapter 4. The dose-response data were also used to appraise curve-fitting methods, using Akaike Information Criterion (AIC) model selection to compare a series of nonlinear models. The type of model fitted to the dose response data had a significant effect on the estimates of LD50 and LD99, suggesting that failure to fit an appropriate model could give misleading estimates of resistance status. In addition, simulated data were used to establish that a potential cost of resistance could be predicted by comparing survival at the upper asymptote of dose-response curves for resistant and susceptible populations, even when differences were as low as 4%. This approach to dose-response modeling ensures that the maximum amount of useful information relating to resistance is gathered in one study. In Chapter 3, I asked how simulations could be used to inform important design choices used in selection experiments. Specifically, I focused on the effects of both within- and between-line variation on estimated power, when detecting small, medium and large effect sizes. Using mixed-effect models on simulated data, I demonstrated that commonly used designs with realistic levels of variation could be underpowered for substantial effect sizes. Thus, use of simulation-based power analysis provides an effective way to avoid under or overpowering a study designs incorporating variation due to random effects. In Chapter 4, I 3 investigated how Ivermectin dosage and changes in population density affect the rate of resistance evolution. I exposed replicate lines of C. remanei to two doses of Ivermectin (high and low) to assess relative survival of lines selected in drug-treated environments compared to untreated controls over 10 generations. Additionally, I maintained lines where mortality was imposed randomly to control for differences in density between drug treatments and to distinguish between the evolutionary consequences of drug treatment versus ecological processes affected by changes in density-dependent feedback. Intriguingly, both drug-selected and random-mortality lines showed an increase in survivorship when challenged with Ivermectin; the magnitude of this increase varied with the intensity of selection and life-history stage. The results suggest that interactions between density-dependent processes and life history may mediate evolved changes in susceptibility to control measures, which could result in misleading conclusions about the evolution of heritable resistance following drug treatment. In Chapter 5, I investigated whether the apparent changes in drug susceptibility found in Chapter 4 were related to evolved changes in life-history of C. remanei populations after selection in drug-treated and random-mortality environments. Rapid passage of lines in the drug-free environment had no effect on the measured life-history traits. In the drug-free environment, adult size and fecundity of drug-selected lines increased compared to the controls but drug selection did not affect lifespan. In the treated environment, drug-selected lines showed increased lifespan and fecundity relative to controls. Adult size of randomly culled lines responded in a similar way to drug-selected lines in the drug-free environment, but no change in fecundity or lifespan was observed in either environment. The results suggest that life histories of nematodes can respond to selection as a result of the application of control measures. Failure to take these responses into account when applying control measures could result in adverse outcomes, such as larger and more fecund parasites, as well as over-estimation of the development of genetically controlled resistance. In conclusion, my thesis shows that there may be a complex relationship between drug selection, density-dependent regulatory processes and life history of populations challenged with control measures. This relationship could have implications for how resistance is monitored and managed if life histories of parasitic species show such eco-evolutionary responses to drug application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to investigate the relationship between the entrepreneurship and the incidence of bureaucratic corruption in the states of Brazil and Federal District. The main hypothesis of this study is that the opening of a business in Brazilian states is negatively affected by the incidence of corruption. The theoretical reference is divided into Entrepreneurship and bureaucratic corruption, with an emphasis on materialistic perspective (objectivist) of entrepreneurship and the effects of bureaucratic corruption on entrepreneurial activity. By the regression method with panel data, we estimated the models with pooled data and fixed and random effects. To measure corruption, I used the General Index of Corruption for the Brazilian states (BOLL, 2010), and to represent entrepreneurship, firm entry per capita by state. Tests (Chow, Hausman and Breusch-Pagan) indicate that the random effects model is more appropriate, and the preliminary results indicate a positive impact of bureaucratic corruption on entrepreneurial activity, contradicting the hypothesis expected and found in previous articles to Brazil, and corroborating the proposition of Dreher and Gassebner (2011) that, in countries with high regulation, bureaucratic corruption can be grease in the wheels of entrepreneurship

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower. While these biases are intrinsic to the species, their characterization can lead to computational approaches capable of diminishing their negative effect on the accuracy of pre-miRNAs predictive models. We investigate in this study how 45 predictive models induced for data sets from 45 species, distributed in eight subphyla/classes, perform when applied to a species different from the species used in its induction. Results: Our computational experiments show that the separability of pre-miRNAs and pseudo pre-miRNAs instances is species-dependent and no feature set performs well for all species, even within the same subphylum/class. Mitigating this species dependency, we show that an ensemble of classifiers reduced the classification errors for all 45 species. As the ensemble members were obtained using meaningful, and yet computationally viable feature sets, the ensembles also have a lower computational cost than individual classifiers that rely on energy stability parameters, which are of prohibitive computational cost in large scale applications. Conclusion: In this study, the combination of multiple pre-miRNAs feature sets and multiple learning biases enhanced the predictive accuracy of pre-miRNAs classifiers of 45 species. This is certainly a promising approach to be incorporated in miRNA discovery tools towards more accurate and less species-dependent tools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se han desarrollado varios modelos prometedores para la captura digital de datos de movilidad, que pueden ser aplicados en la planificación urbana, de transporte y de ordenamiento territorial. Por ello el objetivo de este trabajo es desarrollar una metodología que recolecte información de movilidad con la cual se generen matrices Origen-Destino (OD) y de tiempos de viajes, además que identifique puntos de interés, modos y rutas frecuentes de viaje mediante el desarrollo e implementación de una aplicación para dispositivos móviles Android. Metodología: Se produjo una aplicación para dispositivos móviles con sistema operativo Android, en base a modelos existentes. Esta aplicación obtuvo datos de movilidad a partir de los sensores de localización incorporados en los móviles (GPS), para su posterior migración a una base de datos en la nube y consiguiente post proceso con herramientas de análisis como KNIME, Python y QuantumGis. La aplicación fue probada por 68 estudiantes voluntarios de la Universidad de Cuenca, durante 14 días del mes de enero de 2016. Resultados: Con la información completa de 44 participantes se obtuvieron matrices OD y de tiempos de viajes para diferentes períodos del día, las cuales permitieron identificar variaciones de interacción entre zonas, variaciones de número y tiempo de viajes. Fueron reconocidos también modos de transporte como caminata, bicicleta y motorizados para una sub muestra (n=6). Se detectaron los POIs Residencia (91%), Trabajo/Estudio (74%) y puntos intermedios (20% del total de POIs) y se logró observar comportamientos de movilidad atípico. Finalmente se compararon las rutas más frecuentadas por los usuarios con las rutas óptimas teóricas calculadas, encontrando que el 63.6% de los usuarios coincidían con el recorrido de estas últimas. Conclusiones: El método planteado presenta coherencia con trabajos previos, mostrando niveles de confianza equiparables. El mayor reto es la implementación masiva del modelo creado para la recolección de datos útiles para planes de movilidad.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation focused on the longitudinal analysis of business start-ups using three waves of data from the Kauffman Firm Survey. The first essay used the data from years 2004-2008, and examined the simultaneous relationship between a firm’s capital structure, human resource policies, and its impact on the level of innovation. The firm leverage was calculated as, debt divided by total financial resources. Index of employee well-being was determined by a set of nine dichotomous questions asked in the survey. A negative binomial fixed effects model was used to analyze the effect of employee well-being and leverage on the count data of patents and copyrights, which were used as a proxy for innovation. The paper demonstrated that employee well-being positively affects the firm's innovation, while a higher leverage ratio had a negative impact on the innovation. No significant relation was found between leverage and employee well-being. The second essay used the data from years 2004-2009, and inquired whether a higher entrepreneurial speed of learning is desirable, and whether there is a linkage between the speed of learning and growth rate of the firm. The change in the speed of learning was measured using a pooled OLS estimator in repeated cross-sections. There was evidence of a declining speed of learning over time, and it was concluded that a higher speed of learning is not necessarily a good thing, because speed of learning is contingent on the entrepreneur's initial knowledge, and the precision of the signals he receives from the market. Also, there was no reason to expect speed of learning to be related to the growth of the firm in one direction over another. The third essay used the data from years 2004-2010, and determined the timing of diversification activities by the business start-ups. It captured when a start-up diversified for the first time, and explored the association between an early diversification strategy adopted by a firm, and its survival rate. A semi-parametric Cox proportional hazard model was used to examine the survival pattern. The results demonstrated that firms diversifying at an early stage in their lives show a higher survival rate; however, this effect fades over time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

¿What have we learnt from the 2006-2012 crisis, including events such as the subprime crisis, the bankruptcy of Lehman Brothers or the European sovereign debt crisis, among others? It is usually assumed that in firms that have a CDS quotation, this CDS is the key factor in establishing the credit premiumrisk for a new financial asset. Thus, the CDS is a key element for any investor in taking relative value opportunities across a firm’s capital structure. In the first chapter we study the most relevant aspects of the microstructure of the CDS market in terms of pricing, to have a clear idea of how this market works. We consider that such an analysis is a necessary point for establishing a solid base for the rest of the chapters in order to carry out the different empirical studies we perform. In its document “Basel III: A global regulatory framework for more resilient banks and banking systems”, Basel sets the requirement of a capital charge for credit valuation adjustment (CVA) risk in the trading book and its methodology for the computation for the capital requirement. This regulatory requirement has added extra pressure for in-depth knowledge of the CDS market and this motivates the analysis performed in this thesis. The problem arises in estimating of the credit risk premium for those counterparties without a directly quoted CDS in the market. How can we estimate the credit spread for an issuer without CDS? In addition to this, given the high volatility period in the credit market in the last few years and, in particular, after the default of Lehman Brothers on 15 September 2008, we observe the presence of big outliers in the distribution of credit spread in the different combinations of rating, industry and region. After an exhaustive analysis of the results from the different models studied, we have reached the following conclusions. It is clear that hierarchical regression models fit the data much better than those of non-hierarchical regression. Furthermore,we generally prefer the median model (50%-quantile regression) to the mean model (standard OLS regression) due to its robustness when assigning the price to a new credit asset without spread,minimizing the “inversion problem”. Finally, an additional fundamental reason to prefer the median model is the typical "right skewness" distribution of CDS spreads...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Predicting user behaviour enables user assistant services provide personalized services to the users. This requires a comprehensive user model that can be created by monitoring user interactions and activities. BaranC is a framework that performs user interface (UI) monitoring (and collects all associated context data), builds a user model, and supports services that make use of the user model. A prediction service, Next-App, is built to demonstrate the use of the framework and to evaluate the usefulness of such a prediction service. Next-App analyses a user's data, learns patterns, makes a model for a user, and finally predicts, based on the user model and current context, what application(s) the user is likely to want to use. The prediction is pro-active and dynamic, reflecting the current context, and is also dynamic in that it responds to changes in the user model, as might occur over time as a user's habits change. Initial evaluation of Next-App indicates a high-level of satisfaction with the service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT In the last years, several models were presented trying to obtain lithosphere and Moho thickness in the Iberian Peninsula, using data related to geoid elevation and topography, gravity, seismicity and thermal analysis. The results obtained show a decrease in the thickness of the crust and the lithosphere in the SW part of the Iberian Peninsula. Density anomalies in the crust are also referred. The work I intend to present is related with the south of the Ossa Morena Zone, the South Portuguese Zone and the Algarve, in the south of Portugal. Data obtained in the region was collected and deviations from average values used were detected. Models were made taking into account the specific characteristics of the region. Heat flow, thermal conductivity, heat production, topography, gravity, seismic and geological data available for the region, are used to adapt the models. A special attention will be given to the spatial variation of heat flow values and to Moho depth in the region. The results show that this region is different from other parts of the Iberian Peninsula and a special attention must be given to it. The different values obtained using seismic, gravity, and geoid height data, and the results obtained with models using thermal data shows the importance of trying to know and understand the thermal structure of the regions. Problems related with the use of average values will be focused.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Espécies forrageiras adaptadas às condições semiáridas são uma alternativa para reduzir os impactos negativos na cadeia produtiva de ruminantes da região Nordeste brasileira devido à sazonalidade na oferta de forragem, além de reduzir custo com o fornecimento de alimentos concentrados. Dentre as espécies, a vagem de algaroba (Prosopis juliflora SW D.C.) e palma forrageira (Opuntia e Nopalea) ganham destaque por tolerarem o déficit hídrico e produzirem em períodos onde a oferta de forragem está reduzida, além de apresentam bom valor nutricional e serem bem aceitas pelos animais. Porém, devido à variação na sua composição, seu uso na alimentação animal exige o conhecimento profundo da sua composição para a elaboração de dietas balanceadas. No entanto, devido ao custo e tempo para análise, os produtores não fazem uso da prática de análise da composição químico-bromatológica dos alimentos. Por isto, a espectroscopia de reflectância no infravermelho próximo (NIRS) representa uma importante alternativa aos métodos tradicionais. Objetivou-se com este estudo desenvolver e validar modelos de predição da composição bromatológica de vagem de algaroba e palma forrageira baseados em espectroscopia NIRS, escaneadas em dois modelos de equipamentos e com diferentes processamentos da amostra. Foram coletadas amostras de vagem de algaroba nos estados do Ceará, Bahia, Paraíba e Pernambuco, e amostras de palma forrageira nos estados do Ceará, Paraíba e Pernambuco, frescas (in natura) ou pré-secas e moídas. Para obtenção dos espectros utilizaram-se dois equipamentos NIR, Perten DA 7250 e FOSS 5000. Inicialmente os alimentos foram escaneados in natura em aparelho do modelo Perten, e, com o auxílio do software The Unscrambler 10.2 foi selecionado um grupo de amostras para o banco de calibração. As amostras selecionadas foram secas e moídas, e escaneadas novamente em equipamentos Perten e FOSS. Os valores dos parâmetros de referência foram obtidos por meio de metodologias tradicionalmente aplicadas em laboratório de nutrição animal para matéria seca (MS), matéria mineral (MM), matéria orgânica (MO), proteína bruta (PB), estrato etéreo (EE), fibra solúvel em detergente neutro (FDN), fibra solúvel em detergente ácido (FDA), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). O desempenho dos modelos foi avaliado de acordo com os erros médios de calibração (RMSEC) e validação (RMSECV), coeficiente de determinação (R2 ) e da relação de desempenho de desvio dos modelos (RPD). A análise exploratória dos dados, por meio de tratamentos espectrais e análise de componentes principais (PCA), demonstraram que os bancos de dados eram similares entre si, dando segurança de desenvolver os modelos com todas as amostras selecionadas em um único modelo para cada alimento, algaroba e palma. Na avaliação dos resultados de referência, observou-se que a variação dos resultados para cada parâmetro corroboraram com os descritos na literatura. No desempenho dos modelos, aqueles desenvolvidos com pré-processamento da amostra (pré-secagem e moagem) se mostraram mais robustos do que aqueles construídos com amostras in natura. O aparelho NIRS Perten apresentou desempenho semelhante ao equipamento FOSS, apesar desse último cobrir uma faixa espectral maior e com intervalos de leituras menores. A técnica NIR, associada ao método de calibração multivariada de regressão por meio de quadrados mínimos (PLS), mostrou-se confiável para prever a composição químico-bromatológica de vagem de algaroba e da palma forrageira. Abstract: Forage species adapted to semi-arid conditions are an alternative to reduce the negative impacts in the feed supply for ruminants in the Brazilian Northeast region, due to seasonality in forage availability, as well as in the reducing of cost by providing concentrated feedstuffs. Among the species, mesquite pods (Prosopis juliflora SW DC) and spineless cactus (Opuntia and Nopalea) are highlighted for tolerating the drought and producion in periods where the forage is scarce, and have high nutritional value and also are well accepted by the animals. However, its use in animal diets requires a knowledge about its composition to prepare balanced diets. However, farmers usually do not use feed composition analysis, because their high cost and time-consuming. Thus, the Near Infrared Reflectance Spectroscopy in the (NIRS) is an important alternative to traditional methods. The objective of this study to develop and validate predictive models of the chemical composition of mesquite pods and spineless cactus-based NIRS spectroscopy, scanned in two different spectrometers and sample processing. Mesquite pods samples were collected in the states of Ceará, Bahia, Paraiba and Pernambuco, and samples of forage cactus in the states of Ceará, Paraíba and Pernambuco. In order to obtain the spectra, it was used two NIR equipment: Perten DA 7250 and FOSS 5000. sSpectra of samples were initially obtained fresh (as received) using Perten instrument, and with The Unscrambler software 10.2, a group of subsamples was selected to model development, keeping out redundant ones. The selected samples were dried and ground, and scanned again in both Perten and FOSS instruments. The values of the reference analysis were obtained by methods traditionally applied in animal nutrition laboratory to dry matter (DM), mineral matter (MM), organic matter (OM), crude protein (CP), ether extract (EE), soluble neutral detergent fiber (NDF), soluble acid detergent fiber (ADF), hemicellulose ( HEM) and in vitro digestibility of dry matter (DIVDM). The performance of the models was evaluated according to the Root Mean Square Error of Calibration (RMSEC) and cross-validation (RMSECV), coefficient of determination (R2 ) and the deviation of Ratio of performance Deviation of the models (RPD). Exploratory data analysis through spectral treatments and principal component analysis (PCA), showed that the databases were similar to each other, and may be treated asa single model for each feed - mesquite pods and cactus. Evaluating the reference results, it was observed that the variation were similar to those reported in the literature. Comparing the preprocessing of samples, the performance ofthose developed with preprocessing (dried and ground) of the sample were more robust than those built with fresh samples. The NIRS Perten device performance similar to FOSS equipment, although the latter cover a larger spectral range and with lower readings intervals. NIR technology associate do multivariate techniques is reliable to predict the bromatological composition of mesquite pods and cactus.