951 resultados para Mixed-integer linear programming
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, the optimal reactive power planning problem under risk is presented. The classical mixed-integer nonlinear model for reactive power planning is expanded into two stage stochastic model considering risk. This new model considers uncertainty on the demand load. The risk is quantified by a factor introduced into the objective function and is identified as the variance of the random variables. Finally numerical results illustrate the performance of the proposed model, that is applied to IEEE 30-bus test system to determine optimal amount and location for reactive power expansion.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Optical networks based on passive star couplers and employing wavelength-division multiplexing (WDhf) have been proposed for deployment in local and metropolitan areas. Amplifiers are required in such networks to compensate for the power losses due to splitting and attenuation. However, an optical amplifier has constraints on the maximum gain and the maximum output power it can supply; thus optical amplifier placement becomes a challenging problem. The general problem of minimizing the total amplifier count, subject to the device constraints, is a mixed-integer non-linear problem. Previous studies have attacked the amplifier placement problem by adding the “artificial” constraint that all wavelengths, which are present at a particular point in a fiber, be at the same power level. In this paper, we present a method to solve the minimum amplifier- placement problem while avoiding the equally powered- wavelength constraint. We demonstrate that, by allowing signals to operate at different power levels, our method can reduce the number of amplifiers required in several small to medium-sized networks.