986 resultados para Mastromarco, Giuseppe
Resumo:
The health status of the oldest old, the fastest increasing population segment worldwide, progressively becomes more heterogeneous, and this peculiarity represents a major obstacle to their classification. We compared the effectiveness of four previously proposed criteria (Franceschi et al., 2000; Evert et al., 2003; Gondo et al., 2006; Andersen-Ranberg et al., 2001) in 1160 phenotypically fully characterized Italian siblings of 90 years of age and older (90+, mean age: 93 years; age range: 90–106 years) belonging to 552 sib-ships, recruited in Northern, Central and Southern Italy within the EU-funded project GEHA, followed for a six-year-survival. Main findings were: (i) ‘‘healthy’’ subjects varied within a large range, i.e. 5.2% (Gondo), 8.7% (Evert), 17.7% (Franceschi), and 28.5% (Andersen-Ranberg); (ii) Central Italy subjects showed better health than those from Northern and Southern Italy; (iii) mortality risk was correlated with health status independently of geographical areas; and (iv) 90+ males, although fewer in number, were healthier than females, but with no survival advantage. In conclusion, we identified a modified version of Andersen-Ranberg criteria, based on the concomitant assessment of two basic domains (cognitive, SMMSE; physical, ADL), called ‘‘Simple Model of Functional Status’’ (SMFS), as the most effective proxy to distinguish healthy from not-healthy subjects. This model showed that health status was correlated within sib-ships, suggesting a familial/genetic component.
Resumo:
Biodegradable amphiphilic diblock copolymers based on an aliphatic ester block and various hydrophilic methacrylic monomers were synthesized using a novel hydroxyl-functionalized trithiocarbonate-based chain transfer agent. One protocol involved the one-pot simultaneous ring-opening polymerization (ROP) of the biodegradable monomer (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (L-lactide, LA) and reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-(dimethylamino)ethyl methacrylate (DMA) or oligo(ethylene glycol) methacrylate (OEGMA) monomer, with 4-dimethylaminopyridine being used as the ROP catalyst and 2,2′-azobis(isobutyronitrile) as the initiator for the RAFT polymerization. Alternatively, a two-step protocol involving the initial polymerization of LA followed by the polymerization of DMA, glycerol monomethacrylate or 2-(methacryloyloxy)ethyl phosphorylcholine using 4,4′-azobis(4-cyanovaleric acid) as a RAFT initiator was also explored. Using a solvent switch processing step, these amphiphilic diblock copolymers self-assemble in dilute aqueous solution. Their self-assembly provides various copolymer morphologies depending on the block compositions, as judged by transmission electron microscopy and dynamic light scattering. Two novel disulfide-functionalized PLA-branched block copolymers were also synthesized using simultaneous ROP of LA and RAFT copolymerization of OEGMA or DMA with a disulfide-based dimethacrylate. The disulfide bonds were reductively cleaved using tributyl phosphine to generate reactive thiol groups. Thiol–ene chemistry was utilized for further derivatization with thiol-based biologically important molecules and heavy metals for tissue engineering or bioimaging applications, respectively.
Resumo:
A softened strut-and-tie macro model able to reproduce the flexural behaviour of
external beam-column joint is presented. The model is specific for concrete with hooked steel fibres (FRC) and it is designed to calculate the flexural response, as load-deflection curve, of a beam-column sub-assemblages. The model considers the presence of a constant vertical load acting on the column and of a monotonically increasing lateral force applied at the tip of the beam.
Resumo:
SOMMARIO – Si presenta un macro modello di tipo reticolare in grado di riprodurre il comportamento in presenza di taglio e momento di nodi esterni trave-colonna di telai in calcestruzzo fibrorinforzato con fibre di acciaio
uncinato ed ordinario. Il caricamento del sistema è di tipo monotono come nel caso dell’analisi di pushover. Il modello considera la presenza di armature orizzontali e verticali della regione nodale e tiene in conto delle modalità
di rottura legate allo snervamento delle barre e allo schiacciamento delle regioni compresse in regime di sforzi pluriassiali. Il modello include le deformazioni flessionali della trave e della colonna in presenza di sforzo normale costante e restituisce la risposta del sistema colonna-nodo-trave (sub-assembralggio) tramite le curve carico-freccia all’estremità della semitrave. Per i singoli costituenti (trave, colonna e nodo) si è considerata la prima fessurazione, lo snervamento e lo schiacciamento delle regioni compresse e si sono fornite precise indicazioni sulla sequenza degli eventi che come è noto sono di fondamentale importanza per lo sviluppo di un progetto plastico che rispetti la gerarchia delle resistenze. Con l’uso del modello il controllo della gerarchia delle resistenze avviene a livello sezionale (lo snervamento delle barre deve avvenire prima dello schiacciamento delle regioni compresse) o di macro elemento (nella regione nodale lo snervamento delle staffe precede la crisi dei puntoni) e dell’intero elemento
sub-assemblaggio trave debole, colonna forte e nodo sovraresistente.
La risposta ottenuta con i modello proposto è in buon accordo con le risposte sperimentali disponibili in letteratura (almeno in termini di resistenza del sub-assemblaggio). Il modello è stato ulteriormente validato con analisi
numeriche agli elementi finiti condotte con il codice ATENA-2D. Le analisi numeriche sono state condotte utilizzando per il calcestruzzo fibroso adeguate leggi costitutive proposte dagli autori ed in grado di cogliere gli effetti
di softening e di resistenza residua a trazione legati alla presenza di fibre. Ulteriori sviluppi del modello saranno indirizzati a includere gli effetti di sfilamento delle barre d’armatura della trave e del conseguente degrado delle
tensioni d’aderenza per effetto di carichi monotonici e ciclici.
SUMMARY – A softened strut-and-tie macro model able to reproduce the flexural behavior of external beam-tocolumn joints with the presence of horizontal and vertical steel bars, including softening of compressed struts and yielding of main and secondary steel bars, is presented, to be used for the pushover analysis. The model proposed is able to calculate also the flexural response of fibrous reinforced concrete (FRC) beam-to-column sub-assemblages in term of a multilinear load-deflection curves. The model is able to take into account of the tensile behavior of main bars embedded in the surrounding concrete and of the softening of the compressed strut, the arrangement and percentage of the steel bars, the percentage and the geometry of steel fibers. First cracking, yielding of main steel and crushing of concrete were identified to determine the corresponding loads and displacement and to plot the simplified monotonic load-deflection curves of the sub-assemblages subjected in the column to constant vertical
load and at the tip of the beam to monotonically increasing lateral force. Through these load-delfection curves the component (beam, joint and column) that first collapse can be recognized and the capacity design can be verified.
The experimental results available in the literature are compared with the results obtained through the proposed model. Further, a validation of the proposed model is numerically made by using a non linear finite element program (ATENA-2D) able to analyze the flexural behavior of sub-assemblages.
Resumo:
The genetic contribution to the variation in human lifespan is approximately 25%. Despite the large number of identified disease-susceptibility loci, it is not known which loci influence population mortality. We performed a genome-wide association meta-analysis of 7729 long-lived individuals of European descent (≥ 85 years) and 16121 younger controls (< 65 years) followed by replication in an additional set of 13060 long-lived individuals and 61156 controls. In addition, we performed a subset analysis in cases ≥ 90 years. We observed genome-wide significant association with longevity, as reflected by survival to ages beyond 90 years, at a novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P =1.74 x 10-8). We also confirmed association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 x 10-36), representing the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34103) the minor allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, P = 0.003). This allele has previously been reported to associate with low blood pressure in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular mortality risk, independent of blood pressure. We report on the first GWAS-identified longevity locus on chromosome 5q33.3 influencing survival in the general European population. The minor allele of this locus associates with low blood pressure in middle age, although the contribution of this allele to survival may be less dependent on blood pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to lifespan regulation have to be elucidated.
Resumo:
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.
Resumo:
Purpose
This article aims to analyze the role of performance management systems (PMS) in supporting public value strategies.
Design/methodology/approach
This article draws on the public value dynamic model by Horner and Hutton (2010). It presents the results of a case study of implementation of a PMS model, the ‘Value Pyramid’ (VP).
Findings
The results stress the need for an improved conceptualization of PMS within public value strategy. Through experimentation using the VP, the case site was able to measure and visualize what it considered public value and reflect on the internal/external causes of both creation and destruction of public value.
Research limitations/implication
This article is limited to just one case study, although in-depth and longitudinal.
Originality/value
This article is one of the first attempting to understand the role of PMS within the public value strategy framework, answering the call of Benington and Moore (2010) to consider public value from an accounting perspective.
Resumo:
Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.
Resumo:
We present an implementation of quantum annealing (QA) via lattice Green's function Monte Carlo (GFMC), focusing on its application to the Ising spin glass in transverse field. In particular, we study whether or not such a method is more effective than the path-integral Monte Carlo- (PIMC) based QA, as well as classical simulated annealing (CA), previously tested on the same optimization problem. We identify the issue of importance sampling, i.e., the necessity of possessing reasonably good (variational) trial wave functions, as the key point of the algorithm. We performed GFMC-QA runs using such a Boltzmann-type trial wave function, finding results for the residual energies that are qualitatively similar to those of CA (but at a much larger computational cost), and definitely worse than PIMC-QA. We conclude that, at present, without a serious effort in constructing reliable importance sampling variational wave functions for a quantum glass, GFMC-QA is not a true competitor of PIMC-QA.
Resumo:
iological optimization of proton therapy critically depends on detailed evaluation of relative biological effectiveness (RBE) variations along the Bragg curve. The clinically accepted RBE value of 1.1 is an oversimplification, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak. We observed significant cell killing RBE variations dependent on beam modulation, intrinsic radiosensitivity, and LET in agreement with the LEM predicted values, indicating dose-averaged LET as a suitable parameter for biological effectiveness. Data have also been used to validate a RBE parameterized model.
Resumo:
In a Bayesian learning setting, the posterior distribution of a predictive model arises from a trade-off between its prior distribution and the conditional likelihood of observed data. Such distribution functions usually rely on additional hyperparameters which need to be tuned in order to achieve optimum predictive performance; this operation can be efficiently performed in an Empirical Bayes fashion by maximizing the posterior marginal likelihood of the observed data. Since the score function of this optimization problem is in general characterized by the presence of local optima, it is necessary to resort to global optimization strategies, which require a large number of function evaluations. Given that the evaluation is usually computationally intensive and badly scaled with respect to the dataset size, the maximum number of observations that can be treated simultaneously is quite limited. In this paper, we consider the case of hyperparameter tuning in Gaussian process regression. A straightforward implementation of the posterior log-likelihood for this model requires O(N^3) operations for every iteration of the optimization procedure, where N is the number of examples in the input dataset. We derive a novel set of identities that allow, after an initial overhead of O(N^3), the evaluation of the score function, as well as the Jacobian and Hessian matrices, in O(N) operations. We prove how the proposed identities, that follow from the eigendecomposition of the kernel matrix, yield a reduction of several orders of magnitude in the computation time for the hyperparameter optimization problem. Notably, the proposed solution provides computational advantages even with respect to state of the art approximations that rely on sparse kernel matrices.