991 resultados para Manned space flight


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by recent MSL results where the ablation rate of the PICA heatshield was over-predicted, and staying true to the objectives outlined in the NASA Space Technology Roadmaps and Priorities report, this work focuses on advancing EDL technologies for future space missions.

Due to the difficulties in performing flight tests in the hypervelocity regime, a new ground testing facility called the vertical expansion tunnel is proposed. The adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. If some sacrifice of the reservoir conditions can be made, the VET can be utilized in hypervelocity ground testing, without the problems associated with secondary diaphragm rupture.

The performance of different constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method is investigated in the context of modeling reacting flows characteristic to ground testing facilities, and re-entry conditions. The effectiveness of different constraints are isolated, and new constraints previously unmentioned in the literature are introduced. Three main benefits from the RCCE method were determined: 1) the reduction in number of equations that need to be solved to model a reacting flow; 2) the reduction in stiffness of the system of equations needed to be solved; and 3) the ability to tabulate chemical properties as a function of a constraint once, prior to running a simulation, along with the ability to use the same table for multiple simulations.

Finally, published physical properties of PICA are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A necessary link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a much needed consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented.

Through the use of computational fluid mechanics and computational chemistry methods, significant contributions have been made to advancing ground testing facilities, computational methods for reacting flows, and ablation modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the vulnerabilities of single event effects (SEEs) simulated by heavy ions on ground and observed oil SJ-5 research satellite in space for static random access memories (SRAMs). A single event upset (SEU) prediction code has been used to estimate the proton-induced upset rates based oil the ground test curve of SEU cross-section versus heavy ion linear energy transfer (LET). The result agrees with that of the flight data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to study a series of synthetic cationic porphyrins as the perchlorate and bromide salts. This work presents the analytical results for the porphyrins obtained using 2,5-dihydroxybenzoic acid (DHB) and 1,8,9-anthratriol as matrices. The selective use of matrix affects ion formation from these porphyrins. By using DHB as the matrix, we not only observed [M - nCIO(4)](+) (n = 1-4) ions, but also obtained [2M - nCIO(4)](+) (n = 2-7) ions from the synthetic cationic porphyrins. The space volume of the side chains (R groups) and the nature of the anions (Br- or CIO4-) affected the relative importance of monomeric and dimeric ions of the porphyrin. The possible mechanisms of desorption and ionization of these cationic porphyrins were also considered in this study. MALDI-TOFMS proved to be a very useful method for obtaining structural information on these synthetic cationic porphyrins. Copyright (C) 1999 John Whey & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sample of tobacco essential oil was analyzed using gas chromatography-mass spectrometry (GUMS)and comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC x GC/TOFMS), respectively. In the GUMS analysis, serially coupled columns were used. By comparing the GUMS results with GC x GC/TOFMS result,,, many more components in the essential oil could be found within the two-dimensional separation space of GC x GC. The quantitative determination of components in the essential oil was performed by GC x GC with flame ionization detection (FID), using a method of multiple internal standards calibration, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surrogate-based-optimization methods provide a means to achieve high-fidelity design optimization at reduced computational cost by using a high-fidelity model in combination with lower-fidelity models that are less expensive to evaluate. This paper presents a provably convergent trust-region model-management methodology for variableparameterization design models: that is, models for which the design parameters are defined over different spaces. Corrected space mapping is introduced as a method to map between the variable-parameterization design spaces. It is then used with a sequential-quadratic-programming-like trust-region method for two aerospace-related design optimization problems. Results for a wing design problem and a flapping-flight problem show that the method outperforms direct optimization in the high-fidelity space. On the wing design problem, the new method achieves 76% savings in high-fidelity function calls. On a bat-flight design problem, it achieves approximately 45% time savings, although it converges to a different local minimum than did the benchmark.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper I explore connections between women, art education and spatial relations drawing on the Deleuzo-Guattarian concept of machinic assemblage as a useful analytical tool for making sense of the heterogeneity and meshwork of life narratives and their social milieus. In focusing on Mary Bradish Titcomb, a fin-de-sie`cle Bostonian woman who lived and worked in the interface of education and art, moving in between differentiated series of social, cultural and geographical spaces, I challenge an image of narratives as unified and coherent representations of lives and subjects; at the same time I am pointing to their importance in opening up microsociological analyses of deterritorializations and lines of flight. What I argue is that an attention to space opens up paths for an analytics of becomings, and enables the theorization of open processes, multiplicities and nomadic subjectivities in the field of gender and education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globalization is widely regarded as the rise of the borderless world. However in practice, true globalization points rather to a “spatial logic” by which globalization is manifested locally in the shape of insular space. Globalization in this sense is not merely about the creation of physical fragmentation of space but also the creation of social disintegration. This study tries to proof that global processes also create various forms of insular space leading also to specific social implications. In order to examine the problem this study looks at two cases: China’s Pearl River Delta (PRD) and Jakarta in Indonesia. The PRD case reveals three forms of insular space namely the modular, concealed and the hierarchical. The modular points to the form of enclosed factories where workers are vulnerable for human-right violations due to the absent of public control. The concealed refers to the production of insular space by subtle discrimination against certain social groups in urban space. And the hierarchical points to a production of insular space that is formed by an imbalanced population flow. The Jakarta case attempts to show more types of insularity in relation to the complexity of a mega-city which is shaped by a culture of exclusion. Those are dormant and hollow insularity. The dormant refers to the genesis of insular– radical – community from a culture of resistance. The last type, the hollow, points to the process of making a “pseudo community” where sense of community is not really developed as well as weak social relationship with its surrounding. Although global process creates various expressions of territorial insularization, however, this study finds that the “line of flight” is always present, where the border of insularity is crossed. The PRD’s produces vernacular modernization done by peasants which is less likely to be controlled by the politics of insularization. In Jakarta, the culture of insularization causes urban informalities that have no space, neither spatially nor socially; hence their state of ephemerality continues as a tactic of place-making. This study argues that these crossings possess the potential for reconciling venue to defuse the power of insularity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the first realtime ionospheric predictions network and its capabilities to ingest a global database and forecast F-layer characteristics and "in situ" electron densities along the track of an orbiting spacecraft. A global network of ionosonde stations reported around-the-clock observations of F-region heights and densities, and an on-line library of models provided forecasting capabilities. Each model was tested against the incoming data; relative accuracies were intercompared to determine the best overall fit to the prevailing conditions; and the best-fit model was used to predict ionospheric conditions on an orbit-to-orbit basis for the 12-hour period following a twice-daily model test and validation procedure. It was found that the best-fit model often provided averaged (i.e., climatologically-based) accuracies better than 5% in predicting the heights and critical frequencies of the F-region peaks in the latitudinal domain of the TSS-1R flight path. There was a sharp contrast however, in model-measurement comparisons involving predictions of actual, unaveraged, along-track densities at the 295 km orbital altitude of TSS-1R In this case, extrema in the first-principle models varied by as much as an order of magnitude in density predictions, and the best-fit models were found to disagree with the "in situ" observations of Ne by as much as 140%. The discrepancies are interpreted as a manifestation of difficulties in accurately and self-consistently modeling the external controls of solar and magnetospheric inputs and the spatial and temporal variabilities in electric fields, thermospheric winds, plasmaspheric fluxes, and chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RAMOS RT, MATTOS DA, REBOUCAS ITS, RANVAUD RD. Space and motion perception and discomfort in air travel. Aviat Space Environ Med 2012; 83:1162-6. Introduction: The perception of comfort during air trips is determined by several factors. External factors like cabin design and environmental parameters (temperature, humidity, air pressure, noise, and vibration) interact with individual characteristics (anxiety traits, fear of flying, and personality) from arrival at the airport to landing at the destination. In this study, we investigated the influence of space and motion discomfort (SMD), fear of heights, and anxiety on comfort perception during all phases of air travel. Methods: We evaluated 51 frequent air travelers through a modified version of the Flight Anxiety Situations Questionnaire (FAS), in which new items were added and where the subjects were asked to report their level of discomfort or anxiety (not fear) for each phase of air travel (Chronbach's alpha = 0.974). Correlations were investigated among these scales: State-Trait Anxiety Inventory (STAB, Cohen's Acrophobia Questionnaire, and the Situational Characteristics Questionnaire (SitQ, designed to estimate SMD levels). Results: Scores of SitQ correlated with discomfort in situations involving space and movement perception (Pearson's rho = 0.311), while discomfort was associated with cognitive mechanisms related to scores in the anxiety scales (Pearson's rho = 0.375). Anxiety traits were important determinants of comfort perception before and after flight, while the influence of SMD was more significant during the time spent in the aircraft cabin. Discussion: SMD seems to be an important modulator of comfort perception in air travel. Its influence on physical well being and probably on cognitive performance, with possible effects on flight safety, deserves further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radio communication system is one of the most critical system of the overall satellite platform: it often represents the only way of communication, between a spacecraft and the Ground Segment or among a constellation of satellites. This thesis focuses on specific innovative architectures for on-board and on-ground radio systems. In particular, this work is an integral part of a space program started in 2004 at the University of Bologna, Forlì campus, which led to the completion of the microsatellite ALMASat-1, successfully launched on-board the VEGA maiden flight. The success of this program led to the development of a second microsatellite, named ALMASat-EO, a three-axis stabilized microsatellite able to capture images of the Earth surface. Therefore, the first objective of this study was focused on the investigation of an innovative, efficient and low cost architecture for on-board radio communication systems. The TT&C system and the high data rate transmitter for images downlink design and realization are thoroughly described in this work, together with the development of the embedded hardware and the adopted antenna systems. Moreover, considering the increasing interest in the development of constellations of microsatellite, in particular those flying in close formations, a careful analysis has been carried out for the development of innovative communication protocols for inter-satellite links. Furthermore, in order to investigate the system aspects of space communications, a study has been carried out at ESOC having as objective the design, implementation and test of two experimental devices for the enhancement of the ESA GS. Thus, a significant portion of this thesis is dedicated to the description of the results of a method for improving the phase stability of GS radio frequency equipments by means of real-time phase compensation and a new way to perform two antennas arraying tracking using already existing ESA tracking stations facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiation dose rates at flight altitudes may be hazardously increased during solar cosmic ray events. Within the scope of this paper we investigate the total accumulated radiation doses, i.e. the contribution of galactic and solar cosmic rays, during the two extreme solar cosmic ray events on 29 September 1989 and on 20 January 2005 along selected flight profiles. In addition, the paper discusses the consequences of possible solar cosmic ray flux approximations on the results of the radiation dose computations.