955 resultados para MULTI-COMPONENT ISOTHERMS
Resumo:
O mercado accionista, de uma forma global, tem-se revelado nos últimos tempos uma das principais fontes de incentivo ao mercado de valores mobiliários. O seu impacto junto do público em geral é enorme e a sua importância para as empresas é vital. Interessa, então, perceber como é que a teoria financeira tem obordado a avaliação e a compreensão do processo de formação de uma cotação. Desde os anos 50 até aos dias de hoje, interessa perceber como é que os diferentes autores têm tratado esta abordagem e quais os resultados deste confronto. Interessa sobretudo perceber o abordogem de Stephen Ross e a teoria do arbitragem. Na sequência desta obordagem e com o aparecimento do Multi Index Model, passou a ser possível extimar com maior precisão a evolução da cotação, na medida em que esta estaria dependente de um vasto conjunto de variavéis, que abragem uma vasta área de influência. O contributo de Ross é por isso decisivo. No final interessa reter a melhor técnica e teoria, que defende os interesses do investidor. Face o isto resta, então, saber qual a melhor técnica estatística para proceder a estes estudos empíricos.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização de Telecomunicações.
Resumo:
Este trabalho visa apresentar um enquadramento da realidade económica e industrial do sector transformador de granitos ornamentais em Portugal e fazer uma análise do processo de serragem, com engenhos multi-lâminas e granalha de aço, na medida em que este é o método de seccionamento de blocos de granito mais utilizado pelas grandes indústrias do sector. Tendo em conta a importância económica desta operação produtiva na indústria em causa, foi definido como fito deste projecto a análise estatística dos custos de produção; a definição de fórmulas de cálculo que permitam prever o custo médio de serragem; e o estudo de soluções economicamente viáveis e ambientalmente sustentáveis para o problema das lamas resultantes do expurgo dos engenhos. Para a persecução deste projecto foi realizada uma recolha de dados implementando rotinas de controlo e registo dos mesmos, em quadros de produção normalizados e de fácil preenchimento, pelos operadores destes equipamentos. Esta recolha de dados permitiu isolar, quantificar e formular os factores de rentabilização do processo de serragem selecionando, dentro da amostra de estudo obtida, um conjunto de serragens com características similares e com valores próximos dos valores da média estatística. Apartir dos dados destas serragens foram geradas curvas de tendência polinomial com as quais se analisaram as variações provocadas no custo médio de serragem, pelas variações do factor em estudo. A formulação dos factores de rentabilização e os dados estatísticos obtidos permitiram depois o desenvolvimento de fórmulas de cálculo do custo médio de serragem que establecem o custo de produção diferenciado em função das espessuras com, ou sem, a incorporação dos factores de rentabilização. Como consequência do projecto realizado obteve-se um conjunto de conclusões util, para o sector industrial em causa, que evidencia a importancia da Ocupação dos engenhos e rentabilização de um espaço confinado, da Resistência oferecida à serragem pelos granitos, e da Diferença de altura entre os blocos de uma mesma carga, nos custos de transformação.
Resumo:
A new high performance architecture for the computation of all the DCT operations adopted in the H.264/AVC and HEVC standards is proposed in this paper. Contrasting to other dedicated transform cores, the presented multi-standard transform architecture is supported on a completely configurable, scalable and unified structure, that is able to compute not only the forward and the inverse 8×8 and 4×4 integer DCTs and the 4×4 and 2×2 Hadamard transforms defined in the H.264/AVC standard, but also the 4×4, 8×8, 16×16 and 32×32 integer transforms adopted in HEVC. Experimental results obtained using a Xilinx Virtex-7 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which outperforms its more prominent related designs by at least 1.8 times. When integrated in a multi-core embedded system, this architecture allows the computation, in real-time, of all the transforms mentioned above for resolutions as high as the 8k Ultra High Definition Television (UHDTV) (7680×4320 @ 30fps).
Resumo:
Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.
Resumo:
Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest. This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical properties of hyperspectral data. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. The performance of the method is illustrated using simulated and real data.
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.
Resumo:
International Conference with Peer Review 2012 IEEE International Conference in Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany
Resumo:
This chapter aims to demonstrate how PAOL - Unit for Innovation in Education, a project from ISCAP - School of Accounting and Administration of Oporto ....
Resumo:
Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN
Resumo:
Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.
Resumo:
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.
Resumo:
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.