997 resultados para MPEG-DASH WiFi-Direct Android ExoPlayer Caching DynamicAdaptiveStreaming
MODIFIED DIRECT TWOS-COMPLEMENT PARALLEL ARRAY MULTIPLICATION ALGORITHM FOR COMPLEX MATRIX OPERATION
Resumo:
A direct twos-complement parallel array multiplication algorithm is introduced and modified for digital optical numerical computation. The modified version overcomes the problems encountered in the conventional optical twos-complement algorithm. In the array, all the summands are generated in parallel, and the relevant summands having the same weights are added simultaneously without carries, resulting in the product expressed in a mixed twos-complement system. In a two-stage array, complex multiplication is possible with using four real subarrays. Furthermore, with a three-stage array architecture, complex matrix operation is straightforwardly accomplished. In the experiment, parallel two-stage array complex multiplication with liquid-crystal panels is demonstrated.
Resumo:
This dissertation reformulates and streamlines the core tools of robustness analysis for linear time invariant systems using now-standard methods in convex optimization. In particular, robust performance analysis can be formulated as a primal convex optimization in the form of a semidefinite program using a semidefinite representation of a set of Gramians. The same approach with semidefinite programming duality is applied to develop a linear matrix inequality test for well-connectedness analysis, and many existing results such as the Kalman-Yakubovich--Popov lemma and various scaled small gain tests are derived in an elegant fashion. More importantly, unlike the classical approach, a decision variable in this novel optimization framework contains all inner products of signals in a system, and an algorithm for constructing an input and state pair of a system corresponding to the optimal solution of robustness optimization is presented based on this information. This insight may open up new research directions, and as one such example, this dissertation proposes a semidefinite programming relaxation of a cardinality constrained variant of the H ∞ norm, which we term sparse H ∞ analysis, where an adversarial disturbance can use only a limited number of channels. Finally, sparse H ∞ analysis is applied to the linearized swing dynamics in order to detect potential vulnerable spots in power networks.
Resumo:
This report presents the results of an investigation of a method of underwater propulsion. The propelling system utilizes the energy of a small mass of expanding gas to accelerate the flow of a large mass of water through an open ended duct of proper shape and dimensions to obtain a resultant thrust. The investigation was limited to making a large number of runs on a hydroduct of arbitrary design, varying between wide limits the water flow and gas flow through the device, and measuring the net thrust caused by the introduction and expansion of the gas.
In comparison with the effective exhaust velocity of about 6,000 feet per second observed in rocket motors, this hydroduct model attained a maximum effective exhaust velocity of more than 27,000 feet per second, using nitrogen gas. Using hydrogen gas, effective exhaust velocities of 146,000 feet per second were obtained. Further investigation should prove this method of propulsion not only to be practical but very efficient.
This investigation was conducted at Project No. 1, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, California.
Resumo:
[ES]En este documento se presenta el trabajo realizado para la integración de las distintas herramientas disponibles para la medición de la Calidad de Servicio (QoS) con el Contenedor que les da soporte dentro de la infraestructura QoSMETER desarrollada por el grupo de investigación NQaS de la UPV/EHU. Se analizan las distintas alternativas disponibles para resolver el problema y se plantea el diseño en base a la mejor de ellas.
Resumo:
From the tunneling characteristics of a tin-tin oxide-lead junction, a direct measurement has been made of the energy-gap variation for a superconductor carrying a current in a compensated geometry. Throughout the region investigated – several temperatures near Tc and down to a reduced temperature t = 0.8 –the observed current dependence agrees quite well with predictions based on the Ginzburg-Landau-Gor’kov theory. Near Tc the predicted temperature dependence is also well verified, though deviations are observed at lower temperatures; even for the latter, the data are internally consistent with the temperature dependence of the experimental critical current. At the lowest temperature investigated, t = 0.8, a small “Josephson” tunneling current allowed further a direct measurement of the electron drift velocity at low current densities. From this, a preliminary experimental value of the critical velocity, believed to be the first reported, can be inferred in the basis of Ginzburg-Landau theory. For tin at t = 0.8, we find vc = 87 m/sec. This value does not appear fully consistent with those predicted by recent theories for superconductors with short electronic mean-free-paths.
Resumo:
The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.
Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.
It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."
Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.