933 resultados para MODULATES BAROREFLEX


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0–90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1–48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24–48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self-renewal and differentiation, and it has recently been suggested that mechanical and solid-state cues, such as extracellular matrix (ECM) stiffness, can also regulate the functions of NSCs and other stem cell types. However, relatively little is known of the molecular mechanisms through which stem cells transduce mechanical inputs into fate decisions, the extent to which mechanical inputs instruct fate decisions versus select for or against lineage-committed blast populations, or the in vivo relevance of mechanotransductive signaling molecules in native stem cell niches. Here we demonstrate that ECM-derived mechanical signals act through Rho GTPases to activate the cellular contractility machinery in a key early window during differentiation to regulate NSC lineage commitment. Furthermore, culturing NSCs on increasingly stiff ECMs enhances RhoA and Cdc42 activation, increases NSC stiffness, and suppresses neurogenesis. Likewise, inhibiting RhoA and Cdc42 or downstream regulators of cellular contractility rescues NSCs from stiff matrix- and Rho GTPase-induced neurosuppression. Importantly, Rho GTPase expression and ECM stiffness do not alter proliferation or apoptosis rates indicating that an instructive rather than selective mechanism modulates lineage distributions. Finally, in the adult brain, RhoA activation in hippocampal progenitors suppresses neurogenesis, analogous to its effect in vitro. These results establish Rho GTPase-based mechanotransduction and cellular stiffness as biophysical regulators of NSC fate in vitro and RhoA as an important regulatory protein in the hippocampal stem cell niche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semantic knowledge is supported by a widely distributed neuronal network, with differential patterns of activation depending upon experimental stimulus or task demands. Despite a wide body of knowledge on semantic object processing from the visual modality, the response of this semantic network to environmental sounds remains relatively unknown. Here, we used fMRI to investigate how access to different conceptual attributes from environmental sound input modulates this semantic network. Using a range of living and manmade sounds, we scanned participants whilst they carried out an object attribute verification task. Specifically, we tested visual perceptual, encyclopedic, and categorical attributes about living and manmade objects relative to a high-level auditory perceptual baseline to investigate the differential patterns of response to these contrasting types of object-related attributes, whilst keeping stimulus input constant across conditions. Within the bilateral distributed network engaged for processing environmental sounds across all conditions, we report here a highly significant dissociation within the left hemisphere between the processing of visual perceptual and encyclopedic attributes of objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auditory fear conditioning is dependent on auditory signaling from the medial geniculate (MGm) and the auditory cortex (TE3) to principal neurons of the lateral amygdala (LA). Local circuit GABAergic interneurons are known to inhibit LA principal neurons via fast and slow IPSP's. Stimulation of MGm and TE3 produces excitatory post-synaptic potentials in both LA principal and interneurons, followed by inhibitory post-synaptic potentials. Manipulations of D1 receptors in the lateral and basal amygdala modulate the retrieval of learned association between an auditory CS and foot shock. Here we examined the effects of D1 agonists on GABAergic IPSP's evoked by stimulation of MGm and TE3 afferents in vitro. Whole cell patch recordings were made from principal neurons of the LA, at room temperature, in coronal brain slices using standard methods. Stimulating electrodes were placed on the fiber tracts medial to the LA and at the external capsule/layer VI border dorsal to the LA to activate (0.1-0.2mA) MGm and TE3 afferents respectively. Neurons were held at -55.0 mV by positive current injection to measure the amplitude of the fast IPSP. Changes in input resistance and membrane potential were measured in the absence of current injection. Stimulation of MGm or TE3 afferents produced EPSP's in the majority of principal neurons and in some an EPSP/IPSP sequence. Stimulation of MGm afferents produced IPSP's with amplitudes of -2.30 ± 0.53 mV and stimulation of TE3 afferents produced IPSP's with amplitudes of -1.98 ± 1.26 mV. Bath application of 20μM SKF38393 increased IPSP amplitudes to -5.94 ± 1.62 mV (MGm, n=3) and-5.46 ± 0.31 mV (TE3, n=3). Maximal effect occurred <10mins. A small increase in resting membrane potential and decrease in input resistance were observed. These data suggest that DA modulates both the auditory thalamic and auditory cortical inputs to the LA fear conditioning circuit via local GABAergic circuits. Supported by NIMH Grants 00956, 46516, and 58911.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycodelin A (GdA), is a lipocalin with an immunomodulatory role, secreted by the endometrium under progesterone regulation and proposed to play a role in protecting the fetus from maternal immune attack. Glycodelin A has an inhibitory effect on the proliferation of T cells and B cells and also on the activity of natural killer cells. We have earlier demonstrated that the inhibitory effect of glycodelin A on T cell proliferation is due to apoptosis induced in these cells through the caspase-dependent intrinsic mitochondrial pathway. Studies reported until now have shown that glycodelin modulates the adaptive immune responses. We, therefore, decided to look at its effect, if any, on the innate immune system. The effect of glycodelin on monocytes was studied using human monocytic cell lines, THP1 and U937, and primary human monocytes as model systems. We demonstrated that glycodelin inhibited the proliferation of THP1 and U937 and induced apoptosis in these cells as well as in primary monocytes. We found that this signaling was caspase-independent but followed the intrinsic mitochondrial pathway of apoptosis. No effect of glycodelin was seen on the phagocytic ability of monocytes post-differentiation into macrophages. These observations suggest that, at the fetomaternal interface, glycodelin plays a protective role by deleting the monocytes that could become pro-inflammatory. Importantly, leaving the macrophages untouched to carry on with efficient clearance of the apoptotic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene-targeted disruption of Grg5, a mouse homologue of Drosophila groucho (gro), results in postnatal growth retardation in mice. The growth defect, most striking in approximately half of the Grg5 null mice, occurs during the first 4-5 weeks of age, but most mice recover retarded growth later. We used the nonlinear mixed-effects model to fit the growth data of wild-type, heterozygous, and Grg5 null mice. On the basis of preliminary evidence suggesting an interaction between Grg5 and the transcription factor Cbfa1/Runx2, critical for skeletal development, we further investigated the skeleton in the mice. A long bone growth plate defect was identified, which included shorter zones of proliferative and hypertrophic chondrocytes and decreased trabecular bone formation. This decreased trabecular bone formation is likely caused by a reduced recruitment of osteoblasts into the growth plate region of Grg5 null mice. Like the growth defect, the growth plate and trabecular bone abnormality improved as the mice grew older. The growth plate defect was associated with reduced Indian hedgehog expression and signaling. We suggest that Grg5, a transcriptional coregulator, modulates the activities of transcription factors, such as Cbfa1/Runx2 in vivo to affect Ihh expression and the function of long bone growth plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cognitive impairments of attention, memory and executive functions are a fundamental feature of the pathophysiology of schizophrenia. The neurophysiological and neurochemical changes in the auditory cortex are shown to underlie cognitive impairmentsin schizophrenia patients. Functional state of the neural substrate of auditory information processing could be objectively and non-invasively probed with auditory event-related potentials (ERPs) and event- related fields (ERFs). In the current work, we explored the neurochemical effect on the neural origins of auditory information processing in relation to schizophrenia. By means of ERPs/ERFs we aimed to determine how neural substrates of auditory information processing are modulated by antipsychotic medication in schizophrenia spectrum patients (Studies I, II) and by neuropharmacological challenges in healthy human subjects (Studies III, IV). First, with auditory ERPs we investigated the effects of olanzapine (Study I) and risperidone (Study II) in a group of patients with schizophrenia spectrum disorders. After 2 and 4 weeks of treatment, olanzapine has no significant effects on mismatch negativity(MMN) and P300, which, as it has been suggested, respectively reflect preattentive and attention-dependent information processing. After 2 weeks of treatment, risperidone has no significant effect on P300, however risperidone reduces P200 amplitude. This latter effect of risperidone on neural resources responsible for P200 generation could be partly explained through the action of dopamine. Subsequently, we used simultaneous EEG/MEG to investigate the effects of memantine (Study III) and methylphenidate (Study IV) in healthy subjects. We found that memantine modulates MMN response without changing other ERP components. This could be interpreted as being due to the possible influence of memantine through the NMDA receptors on auditory change- detection mechanism, with processing of auditory stimuli remaining otherwise unchanged. Further, we found that methylphenidate does not modulate the MMN response. This finding could indicate no association between catecholaminergic activities and electrophysiological measures of preattentive auditory discrimination processes reflected in the MMN. However, methylphenidate decreases the P200 amplitudes. This could be interpreted as a modulation of auditory information processing reflected in P200 by dopaminergic and noradrenergic systems. Taken together, our set of studies indicates a complex pattern of neurochemical influences produced by the antipsychotic drugs in the neural substrate of auditory information processing in patients with schizophrenia spectrum disorders and by the pharmacological challenges in healthy subjects studied with ERPs and ERFs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semantic processing can be studied with semantic priming. Target words that are preceded by semantically related prime words are recognized faster and more accurately than targets preceded by unrelated prime words. Semantic priming also affects the magnitude of the N400 event-related potential. The response is smaller to a target word when it is preceded by a related than an unrelated prime word. The effect is called the N400 effect. It is not yet clear, however, how attention modulates semantic priming and the N400 effect. This study investigated how the direction of attention affects the semantic processing of speech. The N400 effect was studied in experimental conditions in which the subjects attention was directed 1) away from the speech stimuli, 2) to phonological features of the speech stimuli, and 3) to semantic features of the speech stimuli. The first aim of the study was to investigate whether the N400 effect for spoken words is dependent on attention to the auditory information. The second aim was to study the differences in the N400 effect when attention is directed to the semantic or other features of speech stimuli. The results showed an N400 effect even when attention was directed away from the speech stimuli. The N400 effect was, however, stronger in conditions during which the speech stimuli were attended. The magnitude of the behavioral semantic priming and the N400 effect did not differ between the conditions during which attention was directed to the semantic or phonological features of the words. The findings indicate that the semantic processing of spoken words is not dependent on attention to auditory information. Furthermore, the results suggest that whether or not semantic processing is relevant for the task performance does not affect the semantic processing of attended spoken words.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgen receptor (AR) is necessary for normal male phenotype development and essential for spermatogenesis. AR is a classical steroid receptor mediating actions of male sex steroids testosterone and 5-alpha-dihydrotestosterone. Numerous coregulators interact with the receptor and regulate AR activity on target genes. This study deals with the characterization of androgen receptor-interacting protein 4 (ARIP4). ARIP4 binds DNA, interacts with AR in vitro and in cultured yeast and mammalian cells, and modulates AR-dependent transactivation. ARIP4 is an active DNA-dependent ATPase, and this enzymatic activity is essential for the ability of ARIP4 to modulate AR function. On the basis of sequence homology in its ATPase domain, ARIP4 belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA repair, and homologous recombination. Similar to its closest homologs ATRX and Rad54, ARIP4 does not seem to be a classical chromatin remodeling protein in that it does not appear to form large protein complexes in vivo or remodel mononucleosomes in vitro. However, ARIP4 is able to generate superhelical torsion on linear DNA fragments. ARIP4 is covalently modified by SUMO-1, and mutation of six potential SUMO attachment sites abolishes the ability of ARIP4 to bind DNA, hydrolyze ATP, and activate AR function. ARIP4 expression starts in early embryonic development. In mouse embryo ARIP4 is present mainly in the neural tube and limb buds. In adult mouse tissues ARIP4 expression is virtually ubiquitous. In mouse testis ARIP4 is expressed in the nuclei of Sertoli cells in a stage-dependent manner. ARIP4 is also present in the nuclei of Leydig cells, spermatogonia, pachytene and diplotene spermatocytes. Testicular expression pattern of ARIP4 does not differ significantly in wild-type, FSHRKO, and LuRKO mice. In the testis of hpg mice, ARIP4 is found mainly in interstitial cells and has very low, if any, expression in Sertoli and germ cells. Heterozygous Arip4+/ mice are fertile and appear normal; however, they are haploinsufficient with regard to androgen action in Sertoli cells. In contrast, Arip4 / embryos are not viable. They have significantly reduced body size at E9.5 and die by E11.5. Compared to wild-type littermates, Arip4 / embryos possess a higher percentage of apoptotic cells at E9.5 and E10.5. Fibroblasts derived from Arip4 / embryos cease growing after 2-3 passages and exhibit a significantly increased apoptosis and decreased proliferation rate than cells from wild-type embryos. Our findings demonstrate that ARIP4 plays an essential role in mouse embryonic development. In addition, testicular expression and AR coregulatory activity of ARIP4 suggest a role of ARIP4-AR interaction in the somatic cells of the testis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a molecular mechanism for the intra-cellular measurement of the ratio of the number of X chromosomes to the number of sets of autosomes, a process central to both sex determination and dosage compensation in Drosophila melanogaster. In addition to the two loci, da and Sxl, which have been shown by Cline (Genetics, 90, 683, 1978)and others to be involved in these processes, we postulate two other loci, one autosomal (ω) and the other, X-linked (π). The product of the autosomal locus da stimulates ω and initiates synthesis of a limited quantity of repressor. Sxl and π ,both of which are X-linked, compete for this repressor as well as for RNA polymerase. It is assumed that Sxl has lower affinity than π for repressor as well as polymerase and that the binding of polymerase to one of these sites modulates the binding affinity of the other site for the enzyme. It can be shown that as a result of these postulated interactions transcription from the Sxl site is proportional to the X/A ratio such that the levels of Sxl+ product are low in males, high in females and intermediate in the intersexes. If, as proposed by Cline, the Sxl- product is an inhibitor of X chromosome activity, this would result in dosage compensation. The model leads to the conclusion that high levels of Sxl+ product promote a female phenotype and low levels, a male phenotype. One interesting consequence of the assumptions on which the model is based is that the level of Sxl+ product in the cell, when examined as a function of increasing repressor concentration, first goes up and then decreases, yielding a bell-shaped curve. This feature of the model provides an explanation for some of the remarkable interactions among mutants at the Sxl, da and mle loci and leads to several predictions. The proposed mechanism may also have relevance to certain other problems, such as size regulation during development, which seem to involve measurement of ratios at the cellular level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-beta-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forkhead box class O (FoxO) transcription factors are members of the forkhead box transcription factor superfamily, with orthologues in various species such as human, worm and fly. FoxO proteins are key regulators of growth, metabolism, stress resistance and, consequently, life span. FoxOs integrate signals from different pathways, e.g. the growth controlling Insulin-TOR signaling pathway and the stress induced JNK and Hippo signaling pathways. FoxO proteins have evolved to guide the cellular response to varying energy and stress conditions by inducing the expression of genes involved in the regulation of growth and metabolism. This work has aimed to deepen the understanding of how FoxO executes its biological functions. A particular emphasis has been laid to its role in growth control. Specifically, evidence is presented indicating that FoxO restricts tissue growth in a situation when TOR signaling is high. This finding can have implications in a human condition called Tuberous sclerosis, manifested by multiple benign tumors. Further, it is shown that FoxO directly binds to the promoter and regulates the expression of a Drosophila Adenylate cyclase gene, ac76e, which in turn modulates the fly s development and growth systemically. These results strengthen FoxOs position among central size regulators as it is able to operate at the level of individual cells as well as in the whole organism. Finally, an attempt to reveal the regulatory network upstream of FoxO has been carried out. Several putative FoxO activity regulators were identified in an RNAi screen of Drosophila kinases and phosphatases. The results underscore that FoxO is regulated through an elaborate network, ensuring the correct execution of key cellular processes in metabolism and response to stress. Overall, the evidence provided in this study strengthens our view of FoxO as a key integrator of growth and stress signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been hypothesized that abuse of supra-therapeutic doses of anabolic androgenic steroids (AASs) can lead to dependence and function as a gateway to abuse of other drugs. This is supported by behavioral studies on animal models and psychiatric evaluations of human subjects, although their neurochemical effects remain largely unknown. A large body of evidence suggests that the ability of the drugs to induce a strong elevation of extracellular dopamine (DA) levels in the nucleus accumbens (NAc), especially, plays a crucial role in their reinforcing effects. -- This study had four main aims. The first was to explore the effects of nandrolone decanoate on dopaminergic and serotonergic activities in the brains of rats. The second aim was to assess whether or not nandrolone pre-exposure modulates the acute neurochemical and behavioral effects of psychostimulant drugs in experimental animals. The third was to investigate if the AAS-pre-treatment induced changes in brain reward circuitry are reversible. And the fourth main goal was to evaluate the role of androgen and estrogen receptors in the modulation of the dopaminergic and serotonergic effects of acute injections of stimulant drugs by sub-chronic nandrolone treatment. The results showed that nandrolone decanoate at doses, high enough to induce erythropoiesis, significantly increased the levels of DOPAC and 5-HT in the cerebral cortex. Co-administration of AAS and psychostimulant drugs showed that the increase in extracellular DA and 5-HT concentration evoked by amphetamine, MDMA and cocaine in the NAc was attenuated dose-dependently by pretreatment with nandrolone. Nandrolone pre-exposure also attenuated the ability of stimulants to cause increased stereotyped behavior and locomotor activity. Despite the significant decrease in nandrolone concentration in blood, the attenuation of cocaine’s effects remained unchanged after a fairly long period without nandrolone, suggesting that nandrolone effects could be long lasting. Blockade of androgen receptors with flutamide abolished the attenuating effect of nandrolone pretreatment on amphetamine-induced elevation of extracellular DA concentration. --- In conclusion, the results show that AAS-pretreatment is able to inhibit the reward-related neurochemical and behavioral effects of amphetamine, MDMA and cocaine in experimental animals. Furthermore, it seems that these effects could be long lasting and it appears that the ability of nandrolone to modulate reward-related effects of stimulants is dependent on activation of androgen receptors.