410 resultados para MICRORING RESONATORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of source properties in across-formant integration was explored using three-formant (F1+F2+F3) analogues of natural sentences (targets). In experiment 1, F1+F3 were harmonic analogues (H1+H3) generated using a monotonous buzz source and second-order resonators; in experiment 2, F1+F3 were tonal analogues (T1+T3). F2 could take either form (H2 or T2). Target formants were always presented monaurally; the receiving ear was assigned randomly on each trial. In some conditions, only the target was present; in others, a competitor for F2 (F2C) was presented contralaterally. Buzz-excited or tonal competitors were created using the time-reversed frequency and amplitude contours of F2. Listeners must reject F2C to optimize keyword recognition. Whether or not a competitor was present, there was no effect of source mismatch between F1+F3 and F2. The impact of adding F2C was modest when it was tonal but large when it was harmonic, irrespective of whether F2C matched F1+F3. This pattern was maintained when harmonic and tonal counterparts were loudness-matched (experiment 3). Source type and competition, rather than acoustic similarity, governed the phonetic contribution of a formant. Contrary to earlier research using dichotic targets, requiring across-ear integration to optimize intelligibility, H2C was an equally effective informational masker for H2 as for T2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pulse–pulse interaction that leads to rogue wave (RW) generation in lasers was previously attributed either to soliton–soliton or soliton–dispersive-wave interaction. The beating between polarization modes in the absence of a saturable absorber causes similar effects. Accounting for these polarization modes in a laser resonator is the purpose of the distributed vector model of laser resonators. Furthermore, high pump power, high amplitude, and short pulse duration are not necessary conditions to observe pulse attraction, repulsion, and collisions and the resonance exchange of energy between among them. The regimes of interest can be tuned just by changing the birefringence in the cavity with the pump power slightly higher than the laser threshold. This allows the observation of a wide range of RW patterns in the same experiment, as well as to classify them. The dynamics of the interaction between pulses leads us to the conclusion that all of these effects occur due to nonlinearity induced by the inverse population in the active fiber as well as an intrinsic nonlinearity in the passive part of the cavity. Most of the mechanisms of pulse–pulse interaction were found to be mutually exclusive. This means that all the observed RW patterns, namely, the “lonely,” “twins,” “three sisters,” and “cross,” are probably different cases of the same process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creation of miniature optical delay lines and buffers is one of the greatest challenges of the modern photonics which can revolutionize optical communications and computing. Several remarkable designs of slow light optical delay lines employing coupled ring resonators and photonic crystal waveguides has been suggested and experimentally demonstrated. However, the insertion loss of these devices is too large for their practical applications. Alternatively, the recently developed photonic fabrication platform, Surface Nanoscale Axial Photonics (SNAP) allows us to fabricate record small delay lines with unprecedentedly small dispersion and low loss. In this report, we review the recent progress in fabrication and design of miniature slow light devices and buffers, in particular, those based on the SNAP technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on generation of harmonic oscillations with frequencies of hundreds of MHz and radio-frequency linewidth of 13 Hz in unidirectional ring laser oscillator. This high stability makes these oscillators a suitable substitute for existing quartz resonators used in high frequency optoelectronics applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy efficient Wavelength Division Multiplexing (WDM) is the key to satisfying the future bandwidth requirements of datacentres. As the silicon photonics platform is regarded the only technology able to meet the required power and cost efficiency levels, the development of silicon photonics compatible narrow linewidth lasers is now crucial. We discuss the requirements for such laser systems and report the experimental demonstration of a compact uncooled external-cavity mW-class laser architecture with a tunable Si Photonic Crystal resonant reflector, suitable for direct Frequency Modulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents novel ultra-compact waveguide bandpass filters that exhibit pseudo elliptic responses with ability to place transmission zeros on both sides of the passband to form sharp roll offs. The filters contain E plane extracted pole sections cascaded with cross-coupled filtering blocks. Compactness is achieved by the use of evanescent mode sections and closer arranged resonators modified to shrink in size. The filters containing non-resonating nodes are designed by means of the generalized coupling coefficients (GCC) extraction procedure for the cross-coupled filtering blocks and extracted pole sections. We illustrate the performance of the proposed structures through the design examples of a third and a fourth order filters with center frequencies of 9.2 GHz and 10 GHz respectively. The sizes of the proposed structures suitable for fabricating using the low cost E plane waveguide technology are 38% smaller than ones of the E plane extracted pole filter of the same order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented are the design and results of a reconfigurable UWB filtenna with sharp dual bandnotch at WiMAX 3.5 GHz and WLAN 5.8 GHz bands. The filtenna is formed by placing three loop resonators in an UWB antenna. The resonators are fitted with Graphene based switches which introduce reconfigurability. The filtenna was simulated electromagnetically and with Graphene based switches in switches OFF and switches ON states. Presented results show a passband from 2.81–12.27 GHz in OFF state and ON state results in sharp dual bandnotch within the passband at 3.45 and 5.95 GHz at a return loss of 2–2.5 dB. The gain and efficiency in both states has also been given and is reduced in ON state at the dual bandnotch. The radiation patterns in E- and H-planes are stable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present invention relates to a logic gate, comprising a metamaterial surface enhanced Raman scattering (MetaSERS) sensor, comprising (a) alphabetical metamaterials in the form of split ring resonators operating in the wavelength range of from 560 to 2200 nm; and (b) a guanine (G) and thymine (T)-rich oligonucleotide that can, upon presence of potassium cations (K+), fold into a G-quadruplex structure, and in presence of Hg2+, form a T-Hg2+-T hairpin complex that inhibits or disrupts the G-quadruplex structure formed in presence of K+, as well as methods of operating and using such a logic gate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions. Interestingly, we show that the distributions for different system sizes collapse on thesame curve after scaling for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii–Kosterlitz–Thouless type. We propose and analyse the feasibility of an experimental reconstruction of the distribution using light–matter interfaces for atoms in optical lattices or in optical resonators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Valveless pulsejets are extremely simple aircraft engines; essentially cleverly designed tubes with no moving parts. These engines utilize pressure waves, instead of machinery, for thrust generation, and have demonstrated thrust-to-weight ratios over 8 and thrust specific fuel consumption levels below 1 lbm/lbf-hr – performance levels that can rival many gas turbines. Despite their simplicity and competitive performance, they have not seen widespread application due to extremely high noise and vibration levels, which have persisted as an unresolved challenge primarily due to a lack of fundamental insight into the operation of these engines. This thesis develops two theories for pulsejet operation (both based on electro-acoustic analogies) that predict measurements better than any previous theory reported in the literature, and then uses them to devise and experimentally validate effective noise reduction strategies. The first theory analyzes valveless pulsejets as acoustic ducts with axially varying area and temperature. An electro-acoustic analogy is used to calculate longitudinal mode frequencies and shapes for prescribed area and temperature distributions inside an engine. Predicted operating frequencies match experimental values to within 6% with the use of appropriate end corrections. Mode shapes are predicted and used to develop strategies for suppressing higher modes that are responsible for much of the perceived noise. These strategies are verified experimentally and via comparison to existing models/data for valveless pulsejets in the literature. The second theory analyzes valveless pulsejets as acoustic systems/circuits in which each engine component is represented by an acoustic impedance. These are assembled to form an equivalent circuit for the engine that is solved to find the frequency response. The theory is used to predict the behavior of two interacting pulsejet engines. It is validated via comparison to experiment and data in the literature. The technique is then used to develop and experimentally verify a method for operating two engines in anti-phase without interfering with thrust production. Finally, Helmholtz resonators are used to suppress higher order modes that inhibit noise suppression via anti-phasing. Experiments show that the acoustic output of two resonator-equipped pulsejets operating in anti-phase is 9 dBA less than the acoustic output of a single pulsejet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose and investigate a hybrid optomechanical system consisting of a micro-mechanical oscillator coupled to the internal states of a distant ensemble of atoms. The interaction between the systems is mediated by a light field which allows the coupling of the two systems in a modular way over long distances. Coupling to internal degrees of freedom of atoms opens up the possibility to employ high-frequency mechanical resonators in the MHz to GHz regime, such as optomechanical crystal structures, and to benefit from the rich toolbox of quantum control over internal atomic states. Previous schemes involving atomic motional states are rather limited in both of these aspects. We derive a full quantum model for the effective coupling including the main sources of decoherence. As an application we show that sympathetic ground-state cooling and strong coupling between the two systems is possible.