987 resultados para MEDICAL IMAGING


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To obtain cerebral perfusion territories of the left, the right. and the posterior circulation in humans with high signal-to-noise ratio (SNR) and robust delineation. Materials and Methods: Continuous arterial spin labeling (CASL) was implemented using a dedicated radio frequency (RF) coil. positioned over the neck, to label the major cerebral feeding arteries in humans. Selective labeling was achieved by flow-driven adiabatic fast passage and by tilting the longitudinal labeling gradient about the Y-axis by theta = +/- 60 degrees. Results: Mean cerebral blood flow (CBF) values in gray matter (GM) and white matter (WM) were 74 +/- 13 mL center dot 100 g(-1) center dot minute(-1) and 14 +/- 13 mL center dot 100 g(-1) center dot minute(-1), respectively (N = 14). There were no signal differences between left and right hemispheres when theta = 0 degrees (P > 0.19), indicating efficient labeling of both hemispheres. When theta = +60 degrees, the signal in GM on the left hemisphere, 0.07 +/- 0.06%, was 92% lower than on the right hemisphere. 0.85 +/- 0.30% (P < 1 x 10(-9)). while for theta = -60 degrees, the signal in the right hemisphere. 0.16 +/- 0.13%, was 82% lower than on the contralateral side. 0.89 +/- 0.22% (P < 1 x 10(-10)). Similar attenuations were obtained in WM. Conclusion: Clear delineation of the left and right cerebral perfusion territories was obtained, allowing discrimination of the anterior and posterior circulation in each hemisphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern medical imaging techniques enable the acquisition of in vivo high resolution images of the vascular system. Most common methods for the detection of vessels in these images, such as multiscale Hessian-based operators and matched filters, rely on the assumption that at each voxel there is a single cylinder. Such an assumption is clearly violated at the multitude of branching points that are easily observed in all, but the Most focused vascular image studies. In this paper, we propose a novel method for detecting vessels in medical images that relaxes this single cylinder assumption. We directly exploit local neighborhood intensities and extract characteristics of the local intensity profile (in a spherical polar coordinate system) which we term as the polar neighborhood intensity profile. We present a new method to capture the common properties shared by polar neighborhood intensity profiles for all the types of vascular points belonging to the vascular system. The new method enables us to detect vessels even near complex extreme points, including branching points. Our method demonstrates improved performance over standard methods on both 2D synthetic images and 3D animal and clinical vascular images, particularly close to vessel branching regions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lead iodide thin films were fabricated using the spray pyrolysis technique. Milli-Q water and N.N-dimethylformamide were used as solvents under varying deposition conditions. Films as thick as 60 mu m were obtained. The optical and structural properties of the samples were investigated using Photoluminescence, Raman scattering, X-ray diffraction, and Scanning electron microscopy. In addition, the study included also the electronic properties which were investigated by measuring the dark conductivity as a function of temperature. The deposition technique seems to be promising for the development of thick films to be used in medical imaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The visualization of three-dimensional(3D)images is increasigly being sed in the area of medicine, helping physicians diagnose desease. the advances achived in scaners esed for acquisition of these 3d exames, such as computerized tumography(CT) and Magnetic Resonance imaging (MRI), enable the generation of images with higher resolutions, thus, generating files with much larger sizes. Currently, the images of computationally expensive one, and demanding the use of a righ and computer for such task. The direct remote acess of these images thruogh the internet is not efficient also, since all images have to be trasferred to the user´s equipment before the 3D visualization process ca start. with these problems in mind, this work proposes and analyses a solution for the remote redering of 3D medical images, called Remote Rendering (RR3D). In RR3D, the whole hedering process is pefomed a server or a cluster of servers, with high computational power, and only the resulting image is tranferred to the client, still allowing the client to peform operations such as rotations, zoom, etc. the solution was developed using web services written in java and an architecture that uses the scientific visualization packcage paraview, the framework paraviewWeb and the PACS server DCM4CHEE.The solution was tested with two scenarios where the rendering process was performed by a sever with graphics hadwere (GPU) and by a server without GPUs. In the scenarios without GPUs, the soluction was executed in parallel with several number of cores (processing units)dedicated to it. In order to compare our solution to order medical visualization application, a third scenario was esed in the rendering process, was done locally. In all tree scenarios, the solution was tested for different network speeds. The solution solved satisfactorily the problem with the delay in the transfer of the DICOM files, while alowing the use of low and computers as client for visualizing the exams even, tablets and smart phones

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oral administration with solid dosage forms is a common route in the drug therapy widely used. The drug release by the disintegration process occurs in several gastrointestinal tract (GIT) regions. AC Biosusceptometry (ACB) was originally proposal to characterize the disintegration process of tablets in vitro and in the human stomach, through changes in magnetic signals. The aim of this work was to employ a multisensor ACB system to monitoring magnetic tablets and capsules in the human GIT and to obtain the magnetic images of the disintegration process. The ACB showed accuracy to quantify the gastric residence time, the intestinal transit time and the magnetic images allowed to visualize the disintegration of magnetic formulations in the GIT. The ACB is a non-invasive, radiation free technique, completely safe and harmless to the volunteers and had demonstrated potential to evaluate pharmaceutical dosage forms in the human gastrointestinal tract. © 2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose new circuits for the implementation of Radial Basis Functions such as Gaussian and Gaussian-like functions. These RBFs are obtained by the subtraction of two differential pair output currents in a folded cascode configuration. We also propose a multidimensional version based on the unidimensional circuits. SPICE simulation results indicate good functionality. These circuits are intended to be applied in the implementation of radial basis function networks. One possible application of these networks is transducer signal conditioning in aircraft and spacecraft vehicles onboard telemetry systems. Copyright 2008 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies on the distribution of plantar pressure between the sole of the foot and the ground were developed before the 19th century. Currently, the most often employed plantar pressure measurement systems are Pedar® and FScan®, which have restrictions such as operational difficulty and high cost. In the present study, a device was constructed from two pressure plates capable of measuring plantar forces in discreet areas of the feet at a low cost, using strain-gages attached to sixteen strategic points of the mechanical elements. Sixteen prismatic beams were soldered to each frame, for which the free extremity of each beam represented a specific point of the foot. Two strain gauges were attached to each beam - one near the upper fixed extremity and the other near the lower fixed extremity. Using a Wheatstone bridge electric circuit, the gauges were used to measure the force acting on the extremity of the beam. Precision and accuracy of the prototype was about 10%. In some measurements, accuracy was 2%. The low precision and accuracy were mainly due to the restrictions of the available equipment, which only permitted four measurements at a time. Thus, it was necessary for participants to stand on the plates four separate times, which signified possible changes in the position of the feet on the pressure plates. Despite some limitations, the aim was achieved. The prototype has been used in some studies and represents a contribution to biomechanics, demonstrating the viability of using strain gauges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study on several components of intervertebral joints is essential to understand the spine's degenerative mechanisms and to assess the best method for their treatment. For such study it is necessary to know the mechanical properties of the isolated intervertebral disc (ID) mechanical properties and, it is necessary to evaluate its stresses and strains. In order to assess the ID displacements, a fine, U-shaped blade was developed, over which two extensometers connected in a Wheatstone bridge were placed. The device was then tested on porcine spine ID, where compression loads were applied and the extremities displacements of the blade coupled to the intervertebral disc were measured. Stress/strain diagram, both on the compression and on the decompression phases, evidencing the non-linear nature of such relationship. With the experiment, it was possible to obtain approximate values of the longitudinal elasticity module (E) of the disc material and of the Poisson coefficient (n ). After several tests, E results are compatible with those obtained by others studies, with very simple and low-cost device. This experiments can be used for obtained others mechanical properties of isolated ID with precision and accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The GEANT4 simulations are essential for the development of medical tomography with proton beams pCT. In the case of thin absorbers the latest releases of GEANT4 generate very similar final spectra which agree well with the results of other popular Monte Carlo codes like TRIM/SRIM, or MCNPX. For thick absorbers, however, the disagreements became evident. In a part, these disagreements are due to the known contradictions in the NIST PSTAR and SRIM reference data. Therefore, it is interesting to compare the GEANT4 results with each other, with experiment, and with diverse code results in a reduced form, which is free from this kind of doubts. In this work such comparison is done within the Reduced Calibration Curve concept elaborated for the proton beam tomography. © 2010 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intestinal parasitosis constitutes a serious health problem in most tropical countries. The diagnosis of enteroparasites in laboratory routine relies on the examination of stool samples using optical microscopy and the error rates usually range from moderate to high. Approaches based on automatic image analysis have been proposed, but the methods are usually specific for some species, some of them are computationally expensive, and image acquisition and focus are manual. We present a solution to automate the diagnosis of the 15 most common species of enteroparasites in Brazil, using a sensitive parasitological technique, a motorized microscope with digital camera for automatic image acquisition and focus, and fast image analysis methods. The results indicate that our solution is effective and suitable for laboratory routine, in which the exam must be concluded in a few minutes. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is a primary tumor of the liver. After local therapies, the tumor evaluation is based on the mRECIST criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper describes a computed methodology to measure through the contrasted area of the lesions the maximum diameter of the tumor by a computational algorithm 63 computed tomography (CT) slices from 23 patients were assessed. Non-contrasted liver and HCC typical nodules were evaluated, and a virtual phantom was developed for this purpose. Optimization of the algorithm detection and quantification was made using the virtual phantom. After that, we compared the algorithm findings of maximum diameter of the target lesions against radiologist measures. Computed results of the maximum diameter are in good agreement with the results obtained by radiologist evaluation, indicating that the algorithm was able to detect properly the tumor limits A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed differences on the order of 0.25 cm for large-sized tumors (diameter > 5 cm), whereas agreement lesser than 1.0cm was found for small-sized tumors. Differences between algorithm and radiologist measures were accurate for small-sized tumors with a trend to a small increase for tumors greater than 5 cm. Therefore, traditional methods for measuring lesion diameter should be complemented with non-subjective measurement methods, which would allow a more correct evaluation of the contrast-enhanced areas of HCC according to the mRECIST criteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our main purpose in this study was to quantify biological tissue in computed tomography (CT) examinations with the aim of developing a skull and a chest patient equivalent phantom (PEP), both specific to infants, aged between 1 and 5 years old. This type of phantom is widely used in the development of optimization procedures for radiographic techniques, especially in computed radiography (CR) systems. In order to classify and quantify the biological tissue, we used a computational algorithm developed in Matlab (R). The algorithm performed a histogram of each CT slice followed by a Gaussian fitting of each tissue type. The algorithm determined the mean thickness for the biological tissues (bone, soft, fat, and lung) and also converted them into the corresponding thicknesses of the simulator material (aluminum, PMMA, and air). We retrospectively analyzed 148 CT examinations of infant patients, 56 for skull exams and 92 were for chest. The results provided sufficient data to construct a phantom to simulate the infant chest and skull in the posterior anterior or anterior posterior (PA/AP) view. Both patient equivalent phantoms developed in this study can be used to assess physical variables such as noise power spectrum (NPS) and signal to noise ratio (SNR) or perform dosimetric control specific to pediatric protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spray coating was used to produce thallium bromide samples on glass substrates. The influence of several fabrication parameters on the final structural properties of the samples was investigated. Substrate position, substrate temperature, solution concentration, carrying gas, and solution flow were varied systematically, the physical deposition mechanism involved in each case being discussed. Total deposition time of about 3.5 h can lead to 62-mu m-thick films, comprising completely packed micrometer-sized crystalline grains. X-ray diffraction and scanning electron microscopy were used to characterize the samples. On the basis of the experimental data, the optimum fabrication conditions were identified. The technique offers an alternative method for fast, cheap fabrication of large-area devices for the detection of high-energy radiation, i.e., X-rays and gamma-rays, in medical imaging.